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Abstract

This manual describes the inla program, a new instrument which allows the user to easily perform
approximate Bayesian inference using integrated nested Laplace approximation (INLA). We describe the
set of models which can be solved by the inla program and provide a series of worked out examples
illustrating its usage in details. Appendix A contains a reference manual for the inla program.

This manual is for version snapshot of the inla program.



Contents

(L Introduction 4
2 Model description| 5
(3 Examples of application| 7
[3.1 A simple time series: the Tokyo rainfall data) . . . . . . .. .. ... ... .. .. ....... 8
[3.1.1  Implementing using the INLA packagefor Rl . . . . .. ... ... ... ... ... 14

[3.2 A time series with seasonal component: the driversdata] . . . . . ... .. ... ... ... 16
[3.2.1  Implementing using the INLA packageforR| . . . . .. ... ... ... ... ... 19

[3.3  Stochastic volatility models|. . . . . . . ... ... 21
[3.3.1 Implementing using the INLA packageforR| . . . . ... ... ... ... ...... 23

[3.4 Bivariate meta-analysis of sensitivity and specificity|. . . . . . . .. ... oo 24
[3.4.1 Implementing using the INLA packageforR| . . . .. .. ... .. ... .. ..... 26

[3.4.2 The Wishart-prior]. . . . . . . . . . . . . . e 26

[3.4.3  Implementing using the INLA packageforR| . . . ... ... ... ... .. ..... 27

[3.4.4  The Wishart-prior (part II)[ . . . . . . ... ... ... ... ... ... . ..., . 28

3.4.5 The Wishart-prior (part I1I)| . . . . . . ... ... ... o o 29

[3.5 Bayesian multiscale analysis for time sertesdatal. . . . . . . . ... ... L oL oL 30
[3.6 Disease mapping| . . . . . . . . ... e e e 33
[3.6.1 Implementing using the INLA packageforR| . . . . .. ... ... ... ... ... 36

[3.7 Disease mapping with covariate| . . . . . . . .. ... L L 37
[3.7.1 Implementing using the INLA packageforR| . . . . ... ... ... ... ...... 40

[3.8 Mapping cancer incidence| . . . . . . .. ... 42
[3.8.1 Implementing using the INLA packageforR| . . . . ... ... .. ... .. ..... 44

3.9  Geoadditive model: Munichrental guide] . . . . . .. .. ... ... ... .. ..., . 45
[3.9.1 Implementing using the INLA packageforR| . . . . .. ... .. ... ... ... .. 47

1 itive model: Zambia children undernutrition| . . . . . . . ... oL Lo 49
[3.11 Log-Gaussian COX PrOCESSES| . . . . . « v v v v v o e e e e e e e e e e e 52
[3.12° A longitudinal study example - Forest healthdata] . . . . . ... ... ... ... ... .... 55
[3.13 Survival analysis - Weibull Model | . . . . . .. ... ... oo o o oo 61
[3.13.1 Implementing using the INLA packageforR| . . . . .. ... ... ... ... ... 62

[3.14 Survival analysis - Weibull model with log-normal frailties| . . . . . ... ... ... ... .. 63
[3.14.1 Implementing using the INLA packageforR| . . . . . ... ... ... ... ..... 64

[3.15 Survival analysis - Model with piecewise constant hazard| . . . . . . . . ... ... ... ... 65

4 The GENERICI-model 66
5 The RW2DX3-model 66
66

67

67

(7 Negative Binomial| 68
(8 Quantile-regression and the asymmetric Laplace-distribution| 69
9 Model assessment and model choicel 70
9.1 Margial Likelthood | . . . . . . . . . . . . . .. 70
9.2 Deviance Information Criterion (DIC)| . . . . . . . . . . . . . .. .. ... ... . ... ... 71




(A Reference manual for the inla program| 76
AT Structureofthe inifilel . . . . . . . .. ... . L 76
[A.1.1 The type=problem section| . . . . . . . . ... .. ... ... ... ... 76

[A.1.2 The type=datasection] . . . . . . . . . . . . . e 77

|A.1.3  The type=predictor section| . . . . . . . . . . . . ... 78

|[A.1.4  The type= ffield typesection| . . . .. . .. . ... ... 80

[A.1.5 The type=Ilinear section| . . . . . . . .. ... ... ... .. ... 81

[A.1.6  The type=INLA section| . . . . . . . . . .. . . . 82

[A.2 Formatof the inputfiles|. . . . . . . ... ... ... ... ... 83
|IA.3  Some possible problems and solutions| . . . . . . ... ... .. L L Lo 84

B S Distribution F ons 85
[B.1 Log Gammadistribution| . . . . . . . . . . . .. .. 85
B.2 Scaled Student-¢ distributionl . . . . . . ..o oL 85
B3 NIGdistibutionl . . . . . . . . oot 85
B4 Weibull distribution] . . . . . . . ..o 85



1 Introduction

Integrated nested Laplace approximation (INLA) is a new approach to statistical inference for latent Gaussian
Markov random field (GMRF) models introduced by Rue and Martino| (2006) and Rue et al.|(2007). It provides
a fast, deterministic alternative to Markov chain Monte Carlo (MCMC) which, at the moment, is the standard
tool for inference in such models. The main advantage of the INLA approach over MCMC is that it is much
faster to compute; it gives answers in minutes and seconds where MCMC requires hours and days. The theory
behind INLA is thoroughly described in|Rue et al.| (2007)) and will not be repeated here.

In short, a latent GMRF model is a hierarchical model where, at the first stage we find a distributional assump-
tion for the observables y usually assumed to be conditionally independent given some latent parameters n
and, possibly, some additional parameters 6,

(y[n, 61) = [ [ (wiln;, 61).
i

The latent parameters 77 are part of a larger latent random field &, which constitutes the second stage of our
hierarchical model. The latent field « is modelled as a GMRF with precision matrix () depending on some
hyperparameters 65

1
7(10:) o< exp{— 3 (@ — 1) Q= — )}
The third, and last, stage of the model consists of the prior distribution for the hyperparameters 6 = (61, 65).

The INLA approach provides a recipe for fast Bayesian inference using accurate approximations to 7(6|y)
and 7(z;|y), i = 0,...,n — 1, i.e. the marginal posterior density for the hyperparameters and the posterior
marginal densities for the latent variables. Different types of approximations are available, see Rue et al.
(2007) for details. The approximate posterior marginals can then be used to compute summary statistics of
interest, such as posterior means, variances or quantiles.

Using the INLA approach it is also possible to challenge the model itself. The model can be assessed through
cross-validation in a reasonable time. Moreover, Bayes factors and deviance information criterion (DIC) can
be computed in an efficient way providing tools for model comparison.

Computational speed is one of the most important components of the INLA approach, therefore special care
has to be put in the implementation of the required algorithms. All procedures necessary to perform INLA are
efficiently implemented in the GMRFLIb library. This an open source library written in (ANSI) C and Fortran
which is freely available on the web page http://www.math.ntnu.no/~hrue/GMRFLib/.

The inla program is a useful tool which allows the user to easily specify and solve a large class of models,
using the algorithms in the GMRFLIb library, without any need for C programming. The components of the
model and the options for the INLA procedures are specified through a in1i file. The inla program reads the
ini file, then it builds and solves the model returning the required approximate posterior marginal densities
and summary statistics.

The class of models which can be solved using the inla program is wide, covering time series models,
generalised additive models (Hastie and Tibshirani, |1990), generalised additive mixed models (Lin and Zhang,
1999)), geoadditive models (Kammand and Wand, [2003)), univariate volatility models (Taylor, 1986). With the
exception of univariate volatility models, the inla program supports a subset of the models supported by
BayesX. BayesX is a software tool, developed in the University of Munich, for estimating structured additive
regression models, |[Brezger et al.| (2003]).

An R package called INLA is also under construction. This works as an interface to the inla program and
its usage is similar to all other R functions.

In this tutorial we present the inla program (and its R interface) and, through a series of worked out examples
show the possible range of applications where approximate Bayesian inference using INLA can be useful. In
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Section [2| we discuss the class of models which can be defined and solved using the inla program. In
Section [3] we describe the use of the inla program through a series of worked out examples of increasing
complexity. The examples include all, but one, examples in [Rue and Held| (2005 and all examples in |Rue
et al.| (2007), plus some more examples previously analysed with BayesX. For most of the example also the
implementation via the R package INLA is reported. Section [J)describes how to perform model assessment
and model comparison. Appendix A consists of a reference manual for the inla program while appendix B
describes some of the implemented probability density.

2 Model description

The inla program supports hierarchical GMRF models of the following type

yjlng, 01 ~ w(y;ln;, 01)  jE€J (1)
ny—1
ni = Offset; + Y wyi fulew) +2] B+e  i=0,...,ny—1 2)
k=0
where
e Jisasubsetof {0,1,...,n, — 1}, that is, not necessarily all latent parameters 7 are observed through
the data y.

e 7(y;|n;,01) is the likelihood of the observed data assumed to be conditional independent given the
latent parameters 77, and, possibly, some additional parameters 61. The latent variable 7); enters the
likelihood through a known link function, see Appendix for details.

e ¢ is a vector of unstructured random effects of length n,, with i.i.d Gaussian priors with precision A,;:
e[\ ~ N'(0, A\, T) 3)

e 11 = (n1,72,...) is a vector of predictors.
e Offset this is an a priori known component to be included in the linear predictor during fitting.
e wj known weights defined for each observed data point.

o fi(cr;) is the effect of a generic covariate k which assumes value cy; for observation 7. The func-
tions fi, k = 0,...,ny — 1 comprise usual nonlinear effect of continuous covariates, time trends
and seasonal effects, two dimensional surfaces, iid random intercepts and slopes and spatial random
effects. The unknown functions, or more exactly the corresponding vector of function evaluations
i = (foks- s fomp—1) 1)1, are modelled as GMRFs given some parameters 6, , that is

Fil0r ~N(©0,Q.h) 4)

e z; is a vector of ng covariates assumed to have a linear effect, and is 3 the corresponding vector of
unknown parameters with independent zero-mean Gaussian prior with fixed precisions.

The full latent field, of dimension n = n,, + Z;ZO_I m; + ng, is then
T = (nT7fgv et fz;fflalgT)'

Note that in the inla program the latent field  is parametrised using the predictors 7 instead of the unstruc-
tured terms €.



All elements of vector x are defined as GMRFs, hence z is itself a GMRF with density:

ny—1 ny—1 ng—1
7T(-’.U‘02) = H 7-‘—(/'7l'|.f()7 tee fnf—17167 )‘77) H W(fk’K’fk) H W(BWL) (5)
i=0 k=0 m=0
where
ny—1
ni‘fo"'-)fnfflv/BNN(Z fk(cki)+Z?6’Aﬁ) (6)
k=0
and 02 = {log A}, Oy, ...,0n,-1} is a vector of unknown hyperparameters. Note that we include the loga-

rithm of the precision parameters in the vector of hyperparameters.

The last element in the definition of our hierarchical model is a prior distribution for the hyperparameters
0 = (01,02). In the inla function all precisions are given a Gamma prior with parameters a and b so that
the mean is a/b and the variance is a/b®. See the Appendix for details about the prior distributions for all the
hyperparameters of the model.

Many well known models from the literature can be written as special cases of (I)) and (2)

o Time series models

Time series models are obtained if ¢, = ¢ represents time. The functions fj, can model nonlinear trends
or seasonal effects

M = firend(t) + fseasonat(t) + z{ B
e Generalised additive models (GAM)
A GAM model is obtained if 7 (y;|n;, ;) belongs to an exponential family, ¢, are univariate, continuous
covariates and fj, are smooth functions.
o Generalised additive mixed models (GAMM) for longitudinal data

Consider longitudinal data for individuals ¢ = 0,...,n; — 1, observed at time points tg,t1,.... A
GAMM model extends a GAM by introducing individual specific random effects, i.e.

it = fo(cito) + -y +fap—1(Cit(n,—1))) + boiwito + + + by —1)iWit(ny—1)

where 7);; is the predictor for individual ¢ at time ¢, z;k, k = 0,...,nf — Lwig, ¢ = 0,...,mp — 1
are covariate values for individual ¢ at time ¢, and by, . . ., b(n, —1); 1s @ vector of n;, individual spe-
cific random intercepts (if w;;, = 1) or slopes. The above model can be written in the general form
in equation by defining » = (i,t), ¢,j = cij for j = 0,...,ny — 1 and Cryng—1)+qg = Witqs
f(nf71)+q(cr,(nf71)+q) = bgiwitq for g = 0, ..., ny. In the same way GAMM'’s for cluster data can be
written in the general form (2)).

o Geoadditive models

If geographical information for the observations in the data set are available, they might be included in
the model as

ni = fi(coi) +---+ fnf—l(C(nfq)i) + fopat(si) + z B

where s; indicates the location of observation 7 and f,q; is a spatially correlated effect. Models where
one of the covariate represent the spatial effect have recently been coined geoadditive by Kammann and
‘Wand! (2003)).

o ANOVA type interaction model

The effect of two continuous covariate w and v can be modelled as

ni = fi(wi) + fa(vi) + frjo(wi,vi) + ...
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where f1 and f; are the main effects of the two covariates and f)5 is a two dimensional interaction
surface. The above model can be written in the general form (2) simply by defining c1; = w;, c2; = v,
csi = (wi, i),

e Univariate stochastic volatility model

Stochastic volatility models are time series models with Gaussian likelihood where it is the variance,
and not the mean of the observed data, to be part of the latent GMRF model. That is

yilni ~ N (0, exp(n;))

The latent field is then typically modelled as a autoregressive model of order 1.

3 Examples of application

In this section we present a series of worked out examples mostly taken from |Rue and Held| (2005), Rue et al.
(2007) and from the BayesX web page. The aim is both to show the wide range of models which can be solved
using the approximate Bayesian inference techniques presented in Rue et al.|(2007)), and to introduce the inla
program which makes it possible for the user to apply the above mentioned approximation techniques, making
use of the GMRFLIb library, in an easy and painless way.

The only input required from the inla program is a ini file containing the description of the model, the
location of the files where the data and the covariates are stored, and, possibly, some options to be passed
to the underlying GMRFLIib library. The ini file is organised in sections each of which either describes
one element of the hierarchical model in equations and (2), or specifies some global parameters for the
underlying functions in the GMRFLIb library. The user is required to specify the likelihood model for the
data, the parameters for the prior distribution of the model hyperparameters 8, and to describe, one by one,
all components of the latent GMRF « in (2). The inla program will then read the model specifications,
build the joint probability distribution for the latent GMRF @ in equation (5, compute approximations for the
required posterior marginals and store the results in a user defined directory.

Before presenting the examples, we describe how the covariate values are stored in files. Each covariate has to
be stored in a separate file. The format of the file depends on whether the covariate is assumed to have linear
or non-linear effect:

Covariates with linear effect: The value of the covariate is simply stored in a file with n,, columns each row
having the format:
) Z

where i = 0,...,n, — 1 and z; is the value of the covariate for observation i.

Covariates with non-linear effect: Let c € C and C = {0 < () < ... < clid®) < ... < (m=1)} That
is, covariate c takes one of the m values in the ordered vector C. The file storing covariate ¢ has n,
row, each with the following format:

wherei = 0,...,n,—1and (idx); is the position of the observed value c¢; in the vector C'. If the values
in C are different from 0, 1, ..., another file of m rows, is necessary to store the values of C. A short

example will be useful:

Example: Let n, = 5 and C = {9,10,11}. Let the observed covariate values be cy = 10, ¢c; = 9,



co = 11, c3 = 9 and ¢4 = 10. Then the covariate file will be as following

B~ W N =
_ o N O =

We would need also a file storing the values in C':

9
10
11

Note that all indexes go from 0 to n — 1 and not from 1 to n.

We run each example in Section [3.T]on two different machines. The first, defined Machine 1, is a laptop with
a Intel(R) Pentium(R) M processor 1.86GHz. The second one, defined Machine 2 is a Dell Poweredge 2950
equipped with two quad-core Itel Xeon 2.66GHz CPUs. For each of the examples we describe the model, the
corresponding ini file and report some output results and the computation time for each of the two machines.

3.1 A simple time series: the Tokyo rainfall data
Our first example is a simple time series model, analysed, among others, in Rue and Held| (2005 Sec. 4.3.4).

Example 1 The number of occurrences of rainfall over 1 mm in the Tokyo area for each calendar year during
two years (1983-84) are registered. It is of interest to estimate the underlying probability p, of rainfall for
calendar day t which is, apriori, assumed to change gradually over time. The likelihood model is binomial

Yye|ne ~ Bin(ng, py)

with logit link function

_exp(m)
pt=17—"7"
1+ exp(m)
The model for the latent variables can be written in the general form of equation (2)) as
= [f(t)
where t is the observed time whose effect is modelled as a smooth function f(-). Following Rue and Held
(2005)), the random vector f = {fo, ..., fses} is assumed to have a circular random walk of order 2 (RW2)

prior with unknown precision \y.

There is only one hyperparameter @ = (log \y) which we assign a LogGamma(a,b) prior distribution with
a = 1and b = 0.0001. The LogGamma distribution is defined such that if X ~ LogGamma(a,b), the
Y = exp(X) ~ Gamma(a,b) with E(Y') = a/b and Var(Y') = a/b?.

Figure[I] panel (a), displays the observed frequencies of rain for the 366 time points. The TOKYO. ini file
which defines the above model for the inla program is:

[The Tokyo—rainfall example]
type = problem
dir = results

[ Predictor—term]



o ® 9 o

11

16

7
18
19
20
21
22
23

type = predictor
initial = 10
fixed = 1

n = 366

[data]

type = data

likelihood = binomial
filename = tokyo.rainfall.data

[latent —RW2]

type = ffield

covariates = time.covariate
n=366

model = rw2

parameters = 1.0 0.0001
cyclic =1

quantiles =0.025 0.975

In the following we guide the reader, section by section, through the above ini file and explain what the
different fields represent. We then briefly illustrate how to run the inla program and how and where the
output is stored.

Each section of the in1i file starts with a tag (in square brackets) which is simply a user defined name for the
section itself. The order of the sections is not important. The field named #ype is contained in each section. It
defines the role of the section in the problem specification and, consequently, determines also the nature of all
other fields in the same section. There are six specifications for the fype field, see Appendix [A.T|for details.

The first section in our ini file, defined by type=problem, specifies some global parameters. The options
specified in this section are valid for the whole problem. Here, the directory where the results will be stored
is defined (line 3).

The second section, defined by #ype=predictor, (lines 5-9), deals with vector 7 in (6). The field n is re-
quired and indicates the length n, of the latent variable vector . The inla program requires a sec-
tion of #ype=predictor to always be present, even in cases, like the example we are presenting here, where
there is no unstructured random effect u and therefore the predictor vector is a deterministic function of
for-o s fnf_l, B. We mimic the absence of unstructured random effect by declaring the precision A, to be
fixed and not random (fixed =1), and the value of the log precision log A, to be high ( initial =10).

The following section, defined by type=data (lines 11-14), specifies the model for the likelihood of the data
7 (y¢|n:) (line 13), and the name of the file where the data are stored (line 14). The format of the data file
depends on the likelihood model, see Appendix For binomial likelihood it is as following:

t ng oy

where ¢ is the data index going from 0 to (ng — 1) = 365.

The last section, defined by #ype= ffield (lines 16-23) specifies the model for the random vector f. In this
example we have a second order random walk (model=rw2) of length 366 (n=366) which is cyclical ( cyclic =1).
We also specify here the parameters a and b for the LogGamma prior for the log precision parameter log A ¢
(line 21). We require the inla program to compute also the 0.025 and 0.975 quantiles for each of the posterior
marginal densities in the latent RW?2 field (line 23). The name of the file where the covariate values are stored
(line 18) completes the model specification. In this case the covariate is just the observed time point. The



covariate file consists of two identical columns with index going from 0 to 365.

N = O
N = O

Once the in1i file is ready, we can run the program using the following command line:
The option —v (verbose) makes the program print out some more information about the model while running.
Only for this example, we reproduce the output of the inla program to make the reader familiar with it.

Processing file [TOKYO. ini ]
inla_build ...
number of sections=[5]
parse section=[0] name=[the tokyo—rainfall example] type=[PROBLEM]
inla_parse_problem ...
name=[the tokyo—rainfall example]
use.derivaties=[1]
dof.max=[50]
store results in directory=[resultsO]
output:
cpo=[0]
dic=[0]
kld=[1]
mlik=[0]
hyperparameters =[0]
summary =[1]
density =[1]
nquantiles=[0] [ ]
ncdf=[0] [ ]
parse section=[1] name=[predictor —term] type=[PREDICTOR]
inla_parse_predictor
section=[ predictor —term ]
PRIOR—>name =[LOGGAMMA ]
PRIOR—PARAMETERS=[1, 0.001]
initialise log_precision[10]
fixed=[1]
n=[366]
compute=[0]
output:
summary =[1]
density =[1]
nquantiles=[0] [ ]
ncdf=[0] [ ]
parse section=[2] name=[data] type=[DATA]
inla_parse_data ...
tag=[data]
likelihood =[BINOMIAL ]
file —>name=[tokyo.rainfall.data]
read n=[1098] entries from file=[tokyo.rainfall.data]
0/366 (idx,a,y) = (0, 2, 0)
1/366 (idx ,a,y) (1, 2, 0)
2/366 (idx,a,y) = (2, 2, 1)
parse section=[3] name=[latent—rw2] type=[FFIELD]
inla_parse_ffield ...
section=[latent —rw2]
model=[rw2]
PRIOR—>name =[LOGGAMMA ]
PRIOR—PARAMETERS=[1, 0.000289]
constr=[0]
diagonal =[0]
compute=[1]
fixed=[0]
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read covariates from file=[time.covariate ]

read n=[732] entries
file=[time.covariate] 0/366
file=[time.covariate ]

n=[366]: use default
cyclic=[1]
initialise

output:

from file=[time.covariate]
(idx,y) = (0, 0)
1/366  (idx,y) = (1, 1)
locations , if required

log_precision[1]

summary =[1]
density =[1]

nquantiles =[2]

ncdf=[0]
parse
inla_parse_ INLA ...
section[inla]
Contents of ai_param 0x9aa3428
Strategy :
Fast mode: On
Use linear approximation
Parameters for
Number of points

Log calculations:

section=[4] name=[inla ]

[ 0.025 0.975 ]

[ ]
type=[INLA]

to log(|Q +c|)? No

improved approximations

evaluate: 9
Step length to compute derivatives numerically: 0.000018
Cutoff value to construct local neigborhood: 0.001000
Limit to accept a Gaussian fit: 0.010000
Limit to accept a Skew—Normal fit: 0.010000
On
Log calculated marginal for the hyperparameters: Off

Integration strategy:
fO (CCD only):
dz (GRID only):
Adjust weights
Difference in log

Gradient
Hessian
Hessian matrix is forced
Compute effective number

(GRID only):
—density limit
Skip configurations

is computed using Central

Use adaptive grid—approach (GRID)
1.100000

1.000000

On

(GRID only):
with (presumed)

to be a diagonal matrix? [No]
of parameters? [Yes]

Perform a Monte Carlo error—test? [No]

Interpolator [Auto]
inla_build:
inla_INLA ...
Size of full graph=[732]

Found optimal

List of hyperparameters:

theta [0] =

Maximise marginal for hyperparam:
Maximise marginal for hyperparam:
Compute the Hessian using central

check for unused entries

reordering =

in [TOKYO. ini ]

[amd ]

[log—precision for latent—rw2]

log(density) = —332.2833 theta =
log(density) = —332.2833 theta =
differences and step_-size[0.001].

2.500000

small density (GRID only):
is computed using Forward difference with step—length 0.001000
difference with step—length 0.001000

8.826705
8.826704
Matrix —type

3.757422
Eigenvectors of the Hessian
1.000000
Eigenvalues of the Hessian
3.757422
StDev/ Correlation matrix (scaled inverse Hessian)
0.515887
Search: coordinate 0 direction —1
config O=[ —1] log(rel.dens)= —0.46, accept,
config 1=[ —2] log(rel.dens)= —1.68, accept,
config 2=[ —3] log(rel.dens)= —3.44, diff to
Search: coordinate 0 direction 1
config 3=[ 1] log(rel.dens)= —0.54, accept,
config 4=[ 2] log(rel.dens)= —2.35, accept,

11

compute, 0.10s
compute, 0.10s
large , stop searching
compute, 0.11s
compute, 0.10s

Use a mean—skew corrected Gaussian by fitting a Skew—Normal

On

[dense ]



config 5=[ 3] log(rel.dens)= —5.90, diff to large, stop searching
Fill —in computations
config 6=[ O] log(rel.dens)= —0.00, accept, compute, 0.10s
Combine the densities with relative weights:
config 0/ 5=[ —1.00] weight = 0.632 adjusted weight = 0.633 neff = 12.49
config 1/ 5=[ —2.00] weight = 0.186 adjusted weight = 0.209 neff = 14.19
config 2/ 5=[ 1.00] weight = 0.584 adjusted weight = 0.585 neff = 9.69
config 3/ 5=[ 2.00] weight = 0.095 adjusted weight = 0.107 neff = 8.53
config 4/ 5=[ 0.00] weight = 1.000 adjusted weight = 0.963 neff = 11.00
Expected effective number of parameters: 11.233, #data/#eff.params: 32.58
Done.
store results in directory[resultsO ]
store summary results in[resultsO/latent—rw2/summary. dat]
store summary (gaussian) results
in[resultsO/latent —rw2/summary—gaussian . dat]
store marginals in[resultsO/latent—rw2/marginal—densities.dat]
store marginal—densities (gaussian)
in[resultsO/latent —rw2/ marginal —densities —gaussian.dat]
store (symmetric) kld’s in[resultsO/latent—rw2/symmetric—kld.dat]
store quantiles in[resultsO/latent—rw2/quantiles.dat]
store quantiles (gaussian)
in[resultsO/latent—rw2/quantiles —gaussian.dat]

Wall—clock time used on[TOKYO. ini ]

Preparations : 0.025 seconds
Approx inference: 5.007 seconds
Output : 5.848 seconds
Total : 10.880 seconds

From the above output we can follow what the 1nla program does: it first reads the different sections, builds
the model for the full latent field x, performs the INLA approximation and, finally, stores the results in the
appropriate directories. The whole procedure takes less than 10 seconds on Machine 1 and about 2 seconds
on Machine 2.

Note that in the output is also reported, for each computed configuration of the hyperparameters, the estimated
number of effective parameters (neff), Rue et al.| (2007) suggest these as a way to check the accuracy of the
approximation of 7(6|y). Namely, if the number of effective parameters is small compared to the number of
data, then we can expect the approximation to be accurate. In this case the ratio between the number of data
and the effective number of parameters is around 32, thus suggesting a good quality of the approximation.

The results are stored in the the directory results . The program creates sub-directories to store separately
results for each component of the model. In our Tokyo example we have two sub-directories:

e predictor —term/

e latent —rw2/

The first one is an empty directory since by default the marginals for the predictor term are not computed, see
Appendix [A.1.3] The second directory contains results for the latent RW2 model. The sub-directories where
the results are stored are printed in the last part of the output of the inla function.

The default results consist of five files for each sub-directory created, namely:

e marginal— densities —gaussian.dat
® summary—gaussian.dat

e marginal— densities . dat
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e summary.dat

o symmetric—kld.dat
Moreover we have two files containing the quantiles

® quantiles —gaussian.dat

® quantiles . dat

The names of the files are always the same for each sub-directory created. The files whose names ends with
—gaussian.dat contain results obtained using the Gaussian approximation to approximate the density of x|y, 6
(see Rue et al.| (2007)), Section 3.2.1) while the other files contain results obtained using one of the improved
approximations for x;|y, @ described in Rue et al.| (2007), i.e. the Laplace approximation or its simplified
version (default).

The file symmetric—kld.dat contains the (symmetric) Kullback-Leibler (KL) divergence between the Gaussian
and the (simplified) Laplace approximation to the marginal posterior densities, which we have plotted in
Figure |1} panel (b). In this example the divergence is larger for the winter months (November to February),
when the observed frequencies are lower, but it stays always very low. Rue et al.| (2007)) propose to use the
Kullback-Leibler distance to check the accuracy of the Gaussian approximation.

e s sessem *  wme see
]
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Figure 1: Results for the Tokyo rainfall example

The “summary” files contain the mean and the standard deviation for each posterior density. There is one line
for each node in the RW?2 model and each line is structured as follows:

t E(rily) o(wely)

Also in the “quantiles” files each line refers to one node and is structured as follows:

t p(0) x(0) p(1) wi(1)...

where p(j) and x+(j) are such that Prob(z; < z:(j)|y) = p(j), 7 = 0,1,.... The number of columns in the
“quantiles” files depends on how many quantile values the user choose to compute. In our example there are
5 columns.

Figure [I] panel (a), displays the binomial frequencies and the approximated posterior mean with uncertainty
bounds for the underlying probabilities p;. The probability of rain is smaller in the winter months.
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The “marginal-densities” files contain the approximated marginal posterior densities. Again each line refers
to a different node in the RW2 model and the structure of each line is as follows

t xo T(rwoly) za T(raly) oo wmx T(@yr-1)|y)

where (x40, 41, - - -, Ty K—l)) are K = 201 selected values of the variable x; and

(7(w10), T (@e1), - - -, T (T4 —1))) are the corresponding values of the density. Figure [I| (right) displays the
Gaussian approximation (broken line) and the simplified Laplace approximation (solid line) for the marginal
posterior density of z365|y, this node is chosen for being the one for which the KL divergence is maximised.
The following R code can be used to reproduce this figure

>marginal<-read.table ("results0/latent-rw2/marginal.densities.dat")
>gaus.marginal<-read.table ("resultsO/latent-rw2/marginal.densities—-gaussian.dat")
>plot (marginalll, seq(2,403,2)],marginalll, seq(3,403,2)],type="1",
lwd=2,ylab="",xlab="")
>lines (gaus.marginall[l,seq(2,403,2)],gaus.marginal[l,seq(3,403,2)],
type="1", lwd=2, 1ty=2)

3.1.1 Implementing using the INLA package for R

Using the INLA package all data files are automatically build by the package itself starting from a usual R
data frame. The data set Tokyo is included in the INLA package and can be loaded as:

>data (Tokyo)

The first rows of the data frame are as following:

> Tokyo
y n time
0 2 1
0 2 2

The main function of the package is the inla () function. Its use is similar to that of the g1lm () R function
for solving generalised linear models, in addition, the function £ () is used to define non linear terms like the
time effect in the Tokyo example.

The formula of the model in R is:

>formula <- y 7 f(time,model="rw2",cyclic=TRUE, param=c(1,0.0001))-1

Note that (as for glm () function) the intercept is automatically added, so if it is not desired, it has to be
explicitly removed.

Once the formula is defined, we only have to call the inla () function specifying the likelihood family and
some additional parameters as following:

>mod.tokyo <- inla(formula, family="binomial",Ntrials=n,data=Tokyo)

The INLA package provides also a summary of the fitted model:

> summary (mod.tokyo)

Call:

14



"inla(formula = formula, family = \"binomial\", data = Tokyo, Ntrials = n)"
The model has no fixed effects
Random effects:
Fixed PostMean PostSD
time : prec FALSE 11196.92 6064.60
Expected number of effective parameters(std dev) :9.87(1.49)

Number of equivalent replicates : 37.09

Posterior marginals for linear predictor and fitted wvalues computed

and the possibility to plot the most relevant features of the fitted model as

>plot (mod.tokyo)

More information about the inla () and £ () functions can be found by typing

>?inla
>?f
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3.2 A time series with seasonal component: the drivers data

The second example is also taken from [Rue and Held (2005, Sec 4.4.2). It is again a time series but here we
decompose the latent variables 7, into a trend and a seasonal component.

Example 2 The data consist in monthly counts of car drivers in Great Britain killed or seriously injured in
car accidents from January 1969 to December 1984. The time series has ng = 192 data points and exhibits a
strong seasonal pattern. One of our goals is to predict the pattern of counts in the 12 month following the last
observation.

We assume the squared root of the counts vy, to be conditionally independent Gaussian random variables:
Y, Ay ~ N (e, 1/Xy), t=0,...,ng—1

The conditional mean 1, is then a sum of a smooth trend and a seasonal component:

n; = seasony + trend;, t=0,...,ny—1 @)
We assume the vector season = (seasony, . . . , seasony, 1) to follow the seasonal model in (3.58) of Rue and
Held (2005), with length 12 and unknown precision Aseason, and the vector trend = (trendy, . . . ,trendnn_l)

to follow a RW2 with unknown precision Ayend.

Note that we have that n, = ng + 12 = 204, since no observations y; are available for t = ng,ng +
1,...,nq + 11. For prediction we are interested in the posterior marginals of (1, - - . s ng+11)-

There are three hyperparameters in the model 6 = (log Ay 108 Aseason; 10g Atrend) for which we choose the
following prior distributions:

Ay ~ LogGamma(4,4)

Aseason ™~ LogGamma(l, 0. 1)

Mrena  ~ LogGamma(1,0.0005)

See Rue and Held|(2005)) for more details.

The corresponding DRIVERS . ini file is as follows:

[Drivers data]

type = problem

dir = results—%d
quantiles = 0.025 0.975

[Predictor]

type = predictor
parameters = 1 0.0005
initial = 13

fixed =1

n = 204

compute=1I

[data]

type = data

likelihood = gaussian
filename = sqrt—drivers.dat
parameters = 4 4

initial = =2

[trend]
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2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

type = ffield
covariates = time.dat
n=204

model = rw?2

parameters = 1 0.0005
initial =7

[seasonal]
type = ffield

model = seasonal
covariates = time.dat
n 204

season=12
parameters = 1 0.01
initial = 10

[INLA parameters]

type

h

= INLA

0.001

We go briefly through the in1i file ,section by section, highlighting the difference with the previous example.

e [Drivers data] section: specifying the quantiles in fype =problem section (line 4) , will make the program

compute quantiles for all nodes in the latent field.

[Predictor] section: the precision is fixed to a high value (lines 9-12) to mimic the absence of an
unstructured term in the model. Anyway, since our goal is to predict the expected counts we ask the
program to compute posterior marginals for 17 as well (compure=1).

[data] section: for Gaussian likelihood the data file has the following format

t owy Yy

where w; are fixed weights, see Appendix Note that in this example the length of the observed
data (194) is smaller than the length of the latent variables vector 1 (204).

[trend] section: defines the RW2 model for the trend component. At line 26 we also define a starting
value for log A¢yeng for the optimiser.

[seasonal] section: defines the model for the seasonal component of the model, the parameter season at
line 34 defines the season length

[INLA parameters]: this is an optional section, defined by rype=INLA, which specifies some param-
eters to be passed to the GMRFLIib library, in this case we specify the step length for the numerical
computation of the gradient and the Hessian of 7(8|y) at its mode, see Appendix for details.

Building and solving the model takes about 10 seconds on Machine 1 and about 3 seconds on Machine 2.

Figure [2] displays the observed and expected counts in the squared root scale (together with 0.025 and 0.975
quantiles). Following is the R code used to produce Figure

#
>
>
>

Read the files

data=read.table ("sqgrt-drivers.dat")

pred=read.table ("results-0/predictor/summary.dat")
quant=read.table ("results-0/predictor/quantiles.dat™")

#Make the plot
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Figure 2: Observed and predicted counts (posterior mean within 0.025 and 0.975 quantiles) for the drivers

data example without the seat belt covariate

> plot (data[,3],pch=19,x1lim=c(0,205))

> lines (pred[,2])
> lines(quant[,3],1lty=2)

> lines(quant[,5],1lty=2)

We consider now a slight modification of Example 2 as discussed by [Rue and Held| (2005, Sec 4.2.2):
Example 2 cont. On January 1983 wearing seat belt became compulsory. To check whether this law had an
effect on the number of serious accidents we modify the model as follows:
. { season(t) + trend(t) t=0,...,168
t pu—

season(t) + trend(t) + 5t =169, ...,204.
We assign additional parameter 3 a Gaussian distribution with 0 precision, equivalent to a flat prior.
Modifying the DRIVERS. ini file to account for the extended model is really easys; it is enough to add a new

section as below:

1 [belt]

> type=linear
3 covariates
4 precision=0

belt.dat

The type =linear parameter specifies that the new covariate has a lines effect, the file belt.dat is as follows

0 0

168 0

169 1

203 1
Figure 3| displays the approximate posterior marginal density for 3 together with 0.025 and 0.975 quantiles.
The 95% confidence region is well below 0 indicating a significant effect of the seat belt law in reducing

the number of dead or injured drivers. Finally, the observed and expected counts in the squared root scale
(together with 0.025 and 0.975 quantiles) for the model with the seat belt covariate are displayed in Figure 4]

a slightly better fit of this model before and after January 1983 is visible.

18



0.4

0.3
1

0.2

0.1

0.0
1

Figure 3: Approximate posterior marginal for parameter 5 with 0.025 and 0.975 quantiles

3.2.1 Implementing using the INLA package for R

Also the Drivers data set is included in the INLA package, and can be loaded as:

>data (Drivers)

The formula for the model without belt effect is the following:

>formula<-sqrt (y) "f (trend, model="rw2",param=c(1l,0.0005),initial=-3)+
f (seasonal,model="seasonal", season.length=12,param=c(1,0.1),initial=2)

Note that the sum-to-zero constraint is set automatically for all intrinsic models (like the RW?2 in this case).

The call to the inla () function is:

>mod=inla (formula, family="gaussian",data=Drivers, control.data=1list (param=c (4,4),
initial=-6),control.inla=1list (h=0.01))

If we want to fit the model with belt effect the only thing to do is to add the covariate belt to the model’s
formula so that it becomes:

>formula<-sqgrt (y) "belt+f (trend, model="rw2",param=c(1,0.0005),initial=-3)+
f (seasonal, model="seasonal", season.length=12,param=c(1,0.1),initial=2)

The call to the inla () function stays exactly the same.
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Figure 4: Observed and predicted counts (posterior mean within 0.025 and 0.975 quantiles) for the drivers
data example with seat belt covariate
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3.3 Stochastic volatility models

Stochastic volatility models are common models in financial time series analysis, lately much interest has been
shown in developing efficient MCMC methods for such models, e.g. Shephard and Pitt| (1997) and |Chib et al.
(2002). In the following example, we show how easily a univariate stochastic volatility model can be solved
using the inla program. The example is taken from Rue et al.|(2007) but the model is slightly modified here.

Example 3 The data consist in 945 observed logarithms of the daily difference of the dollar-pound exchange
rate from October 1st, to June 28th, 1985. The data are displayed in Figure|5| panel (a). We analyse this data
set using a univariate stochastic volatility model ((1aylor, |1986). The likelihood of the data, conditional on the
latent variables is:

yt\m NN(O,exp(m)), t:O,...,nd— 1 (8)

and the model for the latent variables:
Ut:M+ft t:O, 7nT]_1 (9)

where 1 is an unknown common mean with vague Gaussian prior and f = (fo, ..., fn,—1) is modelled as an
auto regressive process of order 1 (ARI) with persistence parameter ¢ € (—1,1) to ensure stationarity, and
precision parameter .

The model has two hyperparameters, (1og Ay, ¢). We re-parametrise the persistence parameter ¢ as

1
Kk = logit (qﬁ;—)

and assign the following prior distributions

log Ay ~ LogGamma(1,0.0005)
K ~ N(0,1/0.0001)

The VOLATILITY.ini file defining the model is the following:

[Standard Volatility]

type = problem
dir = results—%d
[Predictor term]
type = predictor
n = 1001

initial = 13
fixed =1

compute=1

[Data]

type = data
likelihood = stochvol
filename = poundd.dat

[ARI]

type = ffield

model = arl

covariates=time . dat

n=1001

priorO=loggamma ;prior for the log—precision
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23
24
25
26
27
28
29
30
31

initial0=3 sinitial value for the log—precision

parametersO = 1.0 0.0005 ;parameters for the Gamma prior of the precision
priorl=gaussian ;prior for \kappa

initiall =4 sinitial value for \kappa

parametersl = 0 0.0001 ;paramters for the Gaussian prior of \kappa

[ Common mean |
type=linear

The likelihood for the stochastic volatility model is named stochvol (line 14) and the format of the data file is

t Yt

As in Example 2} the precision for the unstructured term ), is fixed, but we compute the marginal posteriors
distributions for the elements of vector 7.

The AR1 model for f is defined in lines 17-28. Unlike all other models at the moment available for the
ffield section, the AR1 has two hyperparameters, namely the precision parameter Ay, and the transformed
persistence parameter r. Lines 22-24 specify the prior and the starting value for the precision parameter A,
and lines 26-28 do the same for parameter «.

The last section of the ini file describes the model for the common mean, the default value for the precision
is used here.

Note that the length of the data set ng is 945 but we have set the length of the latent variable vector 7, to be
ny, = 1001 (lines 7 and 21). In this way we obtain also predictions for the unobserved volatility for the 56
days following the last observation.

-2

0 200 400 600 8’00 0 200 400 600 8’00 1000
(a) Log of the daily difference in the Pound/Dollar ex- (b) Posterior mean of 7 together with 0.025 and 0.975
change rate quantiles.

Figure 5: Data and results for the volatility model in Example 3

Building and running the model takes around 110 seconds on Machine 1 and 26 seconds on Machine 2.

Figure [5] panel (b), display the approximate posterior mean for the logarithm of the unobserved volatility,
together with 0.025 and 0.975 posterior quantiles. The vertical line indicates the last observed data point.

An alternative model for the response variable y; is a Student-¢. This allows heavier tail, a feature which is
often observed in financial time series. The observation model in equation (8)) then becomes

Yt :eXP(nt/Q) %(V) t=1,...,T (10)
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where 7;(v) is a random variable having a Student-t distribution having v degree of freedom and standardised
so that its variance is 1 for any value of v > 2. To implement the new model it is sufficient to substitute the
[Data] section (lines 12-15) with

[Data]

type=data
likelihood=stochvol _t
filename=poundd. dat

Yet another model is the normal inverse Gaussian (NIG) distribution, for which
ye =exp(n/2) NIG, t=1,...,T (11

where NIG is a standardised NIG distribution with two parameters, which (essentially) are skewness and
shape-parameters. To implement the NIG model it is sufficient to substitute the [Data] section (lines 12-15)
with

[Data]

type=data
likelihood=stochvol _nig
filename=poundd. dat

3.3.1 Implementing using the INLA package for R

TO BE COMPLETED.
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3.4 Bivariate meta-analysis of sensitivity and specificity

[This subsection (including the example-files), was kindly provided by Andrea Riebler and Michaela Paul, from the
University of Zurich. Thanks!]

The bivariate model is a model for meta-analysing diagnostic studies reporting pairs of sensitivity and speci-
ficity (Reitsma et al., 2005)). Preserving the bivariate structure of the data, pairs of sensitivity (Se) and speci-
ficity (Sp) are jointly analysed. Any existing correlation between these two measures is taken into account via
random effects. Covariates can be added to the bivariate model and have a separate effect on sensitivity and
specificity.

Example 4 Data are taken from a meta-analysis conducted by |Scheidler et al.|(1997) to compare the utility
of three types of diagnostic imaging - lymphangiography (LAG), computed tomography (CT) and magnetic
resonance (MR) - to detect lymph node metastases in patients with cervical cancer. The dataset consists of a
total of 46 studies: the first 17 for LAG, the following 19 for CT and the last 10 for M R. We analyse this data
set using a generalised linear mixed model approach (Chu and Cole| |2000).

TN'|p; ~ Bin(TN' + FP', Sp'), logit(Sp") = X ;o + s, (12)
TP'|v; ~ Bin(TP' 4+ FN', Se'), logit(Se') = Z;3 + v;, (13)

v 0)" \p/\/TuTv 1/7, ’
where TN, FP, TP and FN represent the number of true negatives, false positives, true positives, and false
negatives, respectively and X ;, Z; are (possibly overlapping) vectors of covariates related to Sp = TNTFP

and Se = TPTFN. The index i represents study i in the meta-analysis. Here, X ;&« = apac - LAG; + acr -
CTi + ayg - MRZ' and Zlﬁ = ﬁLAG . LAGZ' + ﬂCT . CTi + BMR : MRZ' whereby

1 if +=0,...,16 1 if +=17,...,35 1 if 1=236,...,45
LAGF{ if i=0.... CT@,:{ if =17 MRZ:{ if i=36.....

0 else 0 else 0 else

The model has three hyperparameters @ = (log1,,log 7, p). The correlation parameter is constrained to
[—1, 1]. We reparameterise the correlation parameter p using Fisher’s z-transformation as

1
p* = logit (p—;)

which assumes values over the whole real line and assign the following prior distribution to p*
p* ~N(0,1/0.4)

The prior precision of 0.4 corresponds, roughly, to a uniform prior on [—1, 1] for p. For the other hyperpa-
rameters we assign the following prior distributions

log 7, ~ LogGamma(0.25,0.025)
log 7, ~ LogGamma(0.25,0.025)

The BIVARIATE-METAANALYSIS. ini file defining the model is the following:

i [Bivariate meta—analysis ]
> type = problem
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dir = results —%Ild

hyperparameters = 1
quantiles = 0.025 0.5 0.975
[ Predictor term]

type = predictor

n = 92

initial = 12

fixed =1

[Data]

type = data

likelihood = binomial
filename = scheidler.dat
[2diid]

type = ffield

model = 2diid

n = 46

covariates = scheidler _cov.dat
parametersO = 0.25 0.025
parametersl = 0.25 0.025
parameters2 = 0 0.4

[ Covariate lymphangiography TP]
dir = fixed. effect_lag_tp

type = linear

covariates = covariate _lag _tp.dat

[ Covariate lymphangiography TN]
dir = fixed. effect_lag _tn

type = linear

covariates = covariate _lag _tn.dat

[ Covariate computed tomography TP]
dir = fixed. effect_ct_tp

type = linear

covariates = covariate _ct_tp.dat

[ Covariate computed tomography TN]
dir = fixed. effect_ct_tn

type = linear

covariates = covariate_ct_tn.dat

[ Covariate magnetic resonance TP]
dir = fixed. effect_mr_tp

type = linear

covariates = covariate _mr_tp.dat

[ Covariate magnetic resonance TN]
dir = fixed. effect_mr_tn

type = linear

covariates = covariate _mr_tn.dat

[INLA parameters]
type = INLA
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The bivariate model is defined in lines 18-25. The section is defined by fype= ffield . The bivariate model in
equation (14)) is named 2diid in the inla program, and defines the vector of length 2n (BE AWARE!!!), with
contents

Ko, Vo, K1, V15 -+ -y Bn—1,Vn—1

and 7, as the 0’th parameter, 7, as the 1°st parameter and p as the 2’nd parameter.

The parameters a and b for the LogGamma prior for the log precision parameter log 7,, are specified in line
23 those for log 7, in line 24. The mean and precision for the normal prior for p* are specified in line 25. The
data file scheidler.dat has the following format:

0 TP°+FN° TP
1 TNY4+FPY TNO
2 TP '4+FN' TP!
3 TN!'4+Fpl TN!

90 TP%» + FN* Tp%
91 TN 4 Fp% TN%

All covariate files have to be specified in the same structure so that values for 7'P and T'N alternate.

Table [1| displays summary estimates of sensitivity and specificity with corresponding 95% credibility region
for the three imaging modalities.

Imaging Sensitivity Specificity
Median 2.5%-quantile 97.5%-quantile Median 2.5%-quantile 97.5%-quantile
LAG 0.69 0.57 0.79 0.83 0.76 0.89
CT 0.49 0.36 0.62 0.93 0.89 0.96
MR 0.55 0.37 0.71 0.95 0.91 0.98

Table 1: Bivariate meta-analysis: summary estimates for sensitivity and specificity.

3.4.1 Implementing using the INLA package for R

To implement the disease mapping example load the data file:

>data (BivMetaAnalysis)

The model formula is defines as:

formula <- Y~f (diid,model="2diid",param=c(0.25,0.025,0.25,0.025,0,0.4))
+lag.tp+ lag.tnt ct.tpt ct.tnt mr.tpt mr.tn -1

Finally the call to the inla () function:

model=inla (formula, family="binomial", data=BivMetaAnalysis, Ntrials=N)

3.4.2 The Wishart-prior
The model “2diidwishart” is similar to the bivariate joint prior above, but use the Wishart-prior

Precision <MZ> ~ Wishart,(r, R, p=2

v

26



B T Y N N

where the Wishart distribution has density
1
T(W) = ¢ W |r=+1)/2 oxp {—2Trace(WR)} , r>p+1

and u
¢ = 22 R 2= AT] ((r + 1 - )/2).
j=1
Then,
B(W) =rR™, and E(W) = R/(r— (p+ 1),

Only small changes in the . ini file is required, and only in the 2diid section

[2diid]
type = ffield
model = 2diidwishart

n = 46
covariates = scheidler _cov.dat
prior = wishart

parameters = 4 1 2 0.1

The name of the prior is fixed to be Wishart. Its parameters are given a
parameters = r R11 Roo Rio
so in the above example 7 = 4, Rj; = 1, R22 = 2 and R12 = 0.1, where
Ry R12>
R pu—
<R21 Roo

and Ri2 = Ry due to symmetry. The reported hyperparameters are 71, 7> and p as given in (I4), and are the
same as for the the other prior given above.

3.4.3 Implementing using the INLA package for R

To implement the disease mapping example load the data file:

>data (BivMetaAnalysis)

The model formula is defines as:

formula <- Y ~ f(diid,model="2diidwishart", param=c(4,1,2,0.1)
+ lag.tp + lag.tn + ct.tp + ct.tn + mr.tp + mr.tn
-1

Finally the call to the inla () function:

model=inla (formula, family="binomial", data=BivMetaAnalysis, Ntrials=N)
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3.44 The Wishart-prior (part II)

In the case where, say,
(a0, bo), (a1,b1), .-, (an,bn)

are n-samples from a 2D-normal with a Wishart prior as described above, and the model is for example
ni = a; +bici + ...

it is not possible to formulate this using the model = “2diidwishart” since a linear combination of each pair
occur in the predictor. For such cases, the model has to specified as

o model= “2diidwishartpart0” for {a;}

e model= “2diidwishartpartl” for {b; }

where the Wishart-prior is only specified for model = “2diidwishartpart0”. This is more clear if we do the
R-code for the bivariate meta-analysis of sensitivity and specificity -example, using both formulations:

data (BivMetaAnalysis)

### Formulation 1:
formula <- Y~f (diid,model="2diidwishart",param=c(4,1,2,0.1))
+ lag.tp + lag.tn + ct.tp + ct.tn + mr.tp + mr.tn
-1
model = inla(formula, family="binomial", data=BivMetaAnalysis,
Ntrials=N, keep=TRUE)

# get more accurate estimates of the hyperparameters
h = inla.hyperpar (model)

## Formulation 2:

## we know that diid = l:n. Assign odd numbers to part0 and the even ones to
partl

n = dim(BivMetaAnalysis) [1]

k = rep(NA,n)

k[ seg(l, n, by = 2) ] = 1:(n/2)

BivMetaAnalysis2 = cbind(BivMetaAnalysis, "diid.partO" = k)

k = rep(NA,n)

k[ seq(2, n, by = 2) ] = 1:(n/2)

BivMetaAnalysis2 = cbind(BivMetaAnalysis2, "diid.partl" = k)

formula2 <- Y ~ f(diid.part0,model="2diidwishartpart0", param=c(4,1,2,0.1))
+ f(diid.partl,model="2diidwishartpartl")
+ lag.tp + lag.tn + ct.tp + ct.tn + mr.tp + mr.tn
-1

model2 = inla(formula2, family="binomial", data=BivMetaAnalysis2, Ntrials=N)

# get more accurate estimates of the hyperparameters
h2 = inla.hyperpar (model2)

Note that the Wishart-prior is only specified for part0.

For the . ini-file for inla, we get similarly
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[2diid-part0]
type = ffield
model = 2diidwishartpartO

n = 46
covariates = scheidler_cov_part0O.dat
parameters = 4 1 2 0.1

[2diid-partl]

type = ffield

model = 2diidwishartpartl

n = 46

covariates = scheidler_cov_partl.dat

Of’course, both part0 and partl has to have the same length.

If more than one pair of “2diidwishartpart0/1” is defined, the following rule is used to determine the match
between part0 and part.

The first occurrence of “2diidwishartpart0” belongs with the first occurrence of “2diidwishart-
partl”. The second occurrence of ‘“2diidwishartpart0” belongs with the second occurrence of
“2diidwishartpart1” and so on.

3.4.5 The Wishart-prior (part III)

The previous formulation is also available for 3D. In this case the name the prior is fixed to be Wishart3d.
The parameters in the prior are

parameters = v Ry1 Ros R33 Ris Ri3 Ros

where
Ri1 Ri2 Riz
R= | Ri2 R Ra3
Ri3 Resz Ras

The reported hyperparameters are the marginal precisions 71, 72 and 73 and the correlations pi2, p13 and pos.
The model names are as given in the following example.

formula2 <- Y ~ f(diid.part0,model="3diidwishartpartO",
param=c(7,1,2,3,0.1,0.2,0.3))
f(diid.partl,model="3diidwishartpartl") +
f(diid.part2,model="3diidwishartpart2") +

If more than one pair of “3diidwishartpart0/1/2” is defined, the following rule is used to determine the match
between part0, partl and part2.

The first occurrence of “3diidwishartpart0” belongs with the first occurrence of “3diidwishart-
part]” and “3diidwishartpart2”. The second occurrence of “3diidwishartpart0” belongs with the
second occurrence of “3diidwishartpart]” and the second occurrence of “3diidwishartpart2”, and
SO on.
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3.5 Bayesian multiscale analysis for time series data

In the previous examples we were interested in the posterior marginals 7(z;|y) where the uncertainty about the
hyperparameter 0 is integrated out. We present here one example where it is important to be able to precisely
estimate posterior marginals for a fixed value of the hyperparameter 0, that is 7(x;|y, @). The example is
taken from Rue et al.| (2007)).

Example 5 A signal is observed with noise and the goal of the analysis is to detect significant features and
structures in the signal. Since some features might be visible only at some specific level of smoothing it is in-
teresting to consider several levels of smoothing simultaneously. This is the idea behind the SIZer (Significant
ZERo crossing of derivatives) methodology, see|\Chaudhuri and Marron|(1999) and Erdsto, (2005)).

In our example the data are Gamma ray burst intensity, plotted in Figure[0|(panel (a)). The observations are
assumed to be conditionally independent Poisson random variables

y(ti)In(t:) ~ Polexp(n(ti))} i=0,1,...

Where 1)(t) is the underlying signal of interest. We assume 1)(t) to be continuous with derivatives 1/ (t), and
level of smoothing k. The derivative is said to be “significant positive” at time t if

Prob(n/(t) > 0ly, k) > 1 — a/2
with a being the level of significance. A similar definition holds for “significant negative”.

We model 1(t) as an integrated Wiener process with precision k which is Markov if augmented with derivatives
(Wecker and Ansley, 1983)), hence a discretely observed Wiener process observed in n time points is a GMRF
of dimension 2n, see |Rue and Held (2005, Sec. 3.5). Our latent GMRF is then x = (n,n’), that is the
log-mean of the data augmented with its derivatives.

In this example the precision k is fixed therefore there are no random hyperparameters in the model.

The file BURST. ini is as follows:

[Burst data example]

type = problem

dir = results —%d

smtp = GMRFLib_SMTP _BAND
[Poisson data]

type = data

likelihood = poisson
filename = burst.dat

[Predictor term]
type = predictor
n =512
initial 10

fixed =1

[Smoother]

type = ffield

model = crw2

n =512

covariates = covar.dat
initial =7

fixed =1

cdf =0
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The smtp field in the [Burst data example] section (line 4) determines the type of solver for dealing with sparse
matrices, in this case, since we know that the precision matrix of the problem is a band matrix, we can use the
GMRFLib_SMTP_BAND solver which is optimal for band matrices.
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Figure 6: Multiscale analysis example: (a) observed Gamma ray burst intensity, (b) posterior mean for the
underlying signal 7)(¢) for level of smoothing given by log x = 7, (¢) posterior mean of the derivatives 7' (t) is
displayed. The band in the lower part of the figure indicates where the derivatives are found to be significantly
positive (white), negative (black) or none (grey).

Notice that all precision parameters are defined fixed in the ini file (lines 15 and 23). The log-precision of
the [ Predictor term] section is fixed to a high value (line 14) again to mimic the absence of the unstructured
component in the model, while the log-precision in the [Smoorher] section is fixed to a user defined value, in
this case log x = 7. This determines the level of smoothing in the result. The continuous time random walk
model is defined in line 19. Note that even if the length of the smoother term is declared to be 512 (line 20)
the actual length of the output file is 1024 since the derivatives are also included. The derivatives constitutes
the second half of the output file.

Since we are interested in checking where the derivatives are significantly positive or negative, we compute
also the cummulative distribution function (cdf) Prob(z(t) < 0) for the smoother term (line 24). Figure [f]
(panel (b)) displays the posterior mean of 7(t) for log x = 7. In Figure Ekpanel(c)) the posterior mean of the
derivatives 7/ (t) is displayed. The band in the lower part of Figure Ekc) indicates where the derivatives are
found to be significantly positive, negative or none. Figure[6(c) is produced using the following R code:

#Read the file containing approximate mean and sd
>smooth=read.table ("results-0/smoother/summary.dat")

#select the approximations for the derivatives
>deriv=smooth[513:1024, ]
>xx=deriv[, 2]

# Create the graph
>split.screen( rbind(c(0,1,0.3,1), c(0,1,0,0.3)))

>screen (1)
>par ( mar=c(2,2,2,2), oma=c(3,3,2,3) )
>plot (xx[,2],type="1",ylab="",xlab="", xaxs="1")

>screen (2)
>par ( mar=c(2,2,2,2), oma=c(3,3,2,3) )
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>image (1:512, 1, mm, axes=F, col=gray (seq(0,1,1len=3)))

The inla program runs in about 7 seconds on Machine 1 and about 2 seconds on Machine 2.
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3.6 Disease mapping

Our next example is taken from (Rue and Held, [2005, Sec. 4.4.2). The data are collected over a spatial domain
rather than over a time period. The data are georeferenced and we want to include the knowledge of the spatial
location of the data in the model.

Each observed data y; is linked to a spatial region s € S = (0,...,S — 1), so that s; indicates the region the
ith data belongs to. A common way to introduce a spatially correlated effect is to assume that neighbouring
sites are more alike than two arbitrary sites, therefore for a valid prior definition, a neighbourhood has to be
defined for each site s. In geographical applications a common assumption is that two sites are neighbours if
they share a common border.

Let fs(s;) indicate the spatial effect. The prior model for f, = (f(0),..., f(s),..., f(S — 1)) implemented
in the inla program is a simple (but most often used) intrinsic GMRF model, see (Rue and Held, [2005, Ch.

3), defined as:
1

NsAs

RO s £ A ~ NG S ()

s~vs!

) (15)

where n is the number of neighbours of site s, s ~ s’ indicates that the two sites s and s” are neighbours. A,
is the unknown precision parameter.

The neighbourhood structure has to be passed to the inla program through a file which describes the graph
of the spatial component of the model. We describe the required format for such a file using a small example.
Let the file gra . dat, relative to a small graph, be

A LW = O W

—_— N =

DN = O =
W N

Line 1 declares the total number of nodes in the graph, then, in lines 2-6 each node is described. For example,
line 4 states that node 2 has 3 neighbours and these are nodes 1, 3 and 4. This is the same format used in the
GMRFLib library.

Example 6 The number of cases of oral cavity cancer is observed for a 5 year period (1986-1990) in the 544
districts of Germany. The goal of the analysis is to explore the spatial distribution of the data. The common
approach is to assume that the data are conditionally independent Poisson counts

Yi|ni ~ Po(E;exp(n;)) i=0,...,543 (16)

where E; is a fixed quantity which accounts for number of people in district i, age distribution etc. The
standardised mortality ratios y; | E; are displayed in Figure E] panel (a).

The model for the latent variable n; takes the following form
ni = p+ fs(si) +ui (17)

where (i is th common mean, f is a spatially structured term and w is the unstructured term which accounts
for non-observed variability. The prior model for f is the intrinsic GMRF in equation ([[5). We impose a
sum-to-zero restriction on f (Y. f(s) = 0) to ensure identifiably of .

Following Rue and Held| (2005), the two precision hyperparameters of the model (log A, log A\s) are both
given LogGamma priors witha = 1 and b = 0.01.
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(@ (b)

Figure 7: Standardised mortality ratio for oral cavity cancer, panel (a) and estimated relative risks (posterior
mean) of the spatial component exp(f,).

The DISEASE-oral.ini file describing the model for the inla program is:

=T = MY T U O B SR

[Oral—cavity cancer data]
type = problem
dir = results —for—oral—%d

[Predictor]

type = predictor
prior = loggamma
parameters = 1 0.01
n = 544

[data]

type = data
likelihood = poisson
filename = oral. txt

[Spatial]

type = ffield
model = besag

covariates=spatial.covariate

parameters = 1 0.01
constraint = 1
graph = germany. gra

[Constant]
type = linear

The [ predictor ] section (lines 5-9) defines the model for n;. Unlike the previous examples, here there actually
is an unstructured component, therefore in this case A, is not fixed.

The model for the spatial component of f,(-) is defined in lines 16-22. The section is defined by rype= ffield .
The intrinsic GMRF model in equation (I3)) is named besag in the inla program. Line 21 defines the sum-
to-zero constraint for f.. The graph of f, is read from a file (line 22). The last section, lines 24-25 defines
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the model for the common mean p. Figure [/} panel (b), displays the posterior mean of the spatial component

exp(fs)-

A different parametrisation would have been possible for the same model. Namely we could have dropped the
common mean 4 and the sum-to-zero constraint. Modifying the ini file to account for this other parametri-
sation is extremely easys; it is, in fact, sufficient to remove lines 24-25 defining the common mean and line 21
defining the constraint.

The inla program allows also the possibility to introduce a user defined model for some functions f(-) in
equation (2). This is done in a rype= ffield section specifying the field model = genericO. The user then has to
provide the precision function @, corresponding to the stochastic vector f, in a file with the following format

iJ Qy
where i and j are the row and column index and @Q;; is the corresponding element of the precision matrix.
Only the non-zero elements of the precision matrix need to be stored in the file. For example, we could have
stored the precision matrix corresponding to the spatial effect in (I17) in a file, named Qmat . dat. We report
the few first lines of such file:
001
011 -1

112
1 9 -1

The same model as in can then be defined in a new ini file as following:

[Oral—cavity cancer — User defined Q matrix]
type = problem
dir = results —%Id

[Predictor]

type = predictor
prior = loggamma
parameters = 1 0.01
n = 544

[data]

type = data
likelihood = poisson
filename = oral. txt
[Spatial]

type = ffield

model = generic
Omatrix = Qmat. dat
rankdef = 1
covariates = spatial.covariate
parameters = 1 0.01
constraint = 1

[Constant]
type = linear

Notice that the only difference with respect to the ini file previously used is in the section [ Spatial ]. Here
we declare model = genericO and specify the file containing the @ function in line 19. The inla program
then builds a graph based on the non-zero pattern of the specified precision matrix. The optional argument
rankdef, in line 20, specifies the rank deficiency of the precision matrix. For the intrinsic model in equation
the rank deficiency is 1.
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3.6.1 Implementing using the INLA package for R

To implement the example load the data file:

>data (Oral)

When defining a formula in order to use the inla () function, each term specified through £ () has to
correspond to a different column in the data set. In this case we have to effects ( the spatial structured and
the spatial unstructured one) for which the covariate assumes the same values, so we have to specify a new
column in the data set as:

>Oral<-cbind (Oral, region.struct=0ral$region)

The model formula is then defines as:

>formula<-Y~f (region.struct,model="besag",graph.file="germany.graph",param=c(1,0.01))
+f (region,model="iid", param=c(1,0.01))

The graph file cannot be loaded into R and the path to the file has to be provided as a parameter of the £ ()
function.

Finally the call to the inla () function:

>mod <- inla(formula, family="poisson",data=0Oral,E=E, control.inla=1ist (h=0.01))

Notice that because of the way the Poisson likelihood is defined, the fixed quantity £ in equation [16] are
included through the parameter E and not through offset.

The BYM-model There is also alternative model named BYM which is simply the sum of the besag model
and the iid model.

>formula<-Y~f (region.struct,model="bym",graph.file="germany.graph")

The main benefite is that this allow to get the posterior marginals of the sum fs(s;) + w;, ie the sum of the
spatial and iid model; otherwise it offers no advantages. The hyperparameters are the two log-precisions

[ = (log Aiid, log Abesag)

and the prior-parameters are defined as (i, biid, Gbesag Dbesag)-
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3.7 Disease mapping with covariate

We present now an extension of the model in Example [ which allows for adjusting the log-relative risk by
a semi-parametric function of a covariate which is believed to influence the risk. The model is a Bayesian
semiparametric model with an additional spatial effect. These kinds of models have been named “geoadditive
models” in [Kammann and Wand| (2003)). For an introduction to the subject see, for example, Fahrmeir and
Tutz (2001). The example below is taken from Rue et al.| (2007).

Example 7 Larynx cancer mortality counts are observed in the 544 district of Germany from 1986 to 1990.
As in Example [6| we assume the data to be conditionally independent Poisson random variables with mean
E; exp(n;), where E; is fixed and accounts for demographic variation, and n; is the log-relative risk. Together
with the counts, for each district, the level of smoking consumption c is registered.

The model for n; takes the following form

ni = p+ fs(si) + flei) +u (18)

where, as in Example @ fs(+) is the spatial effect modelled according to , and u; is the unstructured
random effect. The remaining term in , f(c;), is the unknown effect of of the exposure covariate which as-
sumes value c; for observation i. The effect of covariate c is modelled as a smooth function f(-) parametrised
as unknown values f = (fo,..., fm-1)" at m = 100 equidistant values of c;. We have scaled the covariate
values so that they belong to the interval [0, 10]. The vector f is modelled with a second-order random walk
(RW2) prior with unknown precision \y. A sum-to-zero constraint is imposed on [, and f separate out the
spatial effect and the effect of the covariate from the common mean (.

The model has three hyperparameters @ = (log \s,1og Af,log \y)). Following |Rue et al. (2007) we assign a
vague LogGamma prior to each element of 6.

In Figure@] the standardised mortality ratios, y; / E; are displayed (panel (a)) together with the observed values
of the covariate c (panel (b)).

The DISEASE-COVARIATE. ini file defining the model is the following:

[Disease mapping with covariate]
type = problem
dir = results —%d

s [Predictor term]

type = predictor

n = 544

prior = loggamma
initial=9

parameters = 1.0 0.00005

[Data]

type = data
likelihood = poisson
filename = larynx.dat

[Spatial]

type = ffield

model = besag

covariates=spatial —covariate . dat
prior = loggamma

parameters = 1.0 0.00005

37



23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

() (b)

Figure 8: Standardised mortality ratio for larynx cancer, panel (a) and observed covariate values, panel(b)

graph = germany. gra
constraint = 1
initial=3

diagonal = 0.001

[ Covariate]

type =ffield

model = rw2

covariates = covariate.dat
locations=covariate . value
prior = loggamma

parameters = 1 0.05
initial=9

diagonal = 0.00001
quantiles =0.025 0.975
constraint = 1

[Constant linear]
type = linear

[INLA param]
type = INLA
h = 0.001

The section [ Spatial ] defines the model for the structured spatial component f,. We recognise the intrinsic
GMRF model in line 19 and the graph file in line 23. The field diagonal at line 36 indicates a (small) number
to be added to the diagonal of the precision matrix for f to ensure that it is positive definite.

The model for the semi-parametric function f, which is the new feature introduced by this example, is defined
in the section tagged [Covariate]. The file covariate .value declared in line 32 contains all values that the
covariate ¢ could assume, they are ordered from the lower to higher. In this case the file contains one sequence
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of numbers from 0 to 9.9 with step 0.1. The file covariate . dat contains information on which values of c is
actually observed in each district. We report the first 5 lines of the file to better explain the format of such files

56
65
50
63
65

LW = O

For example, line 3 tells us that for district 2 the observed value of the covariate c is the 50th element of the
series in file covariate . value, that is 0.5.

In the last section, tagged [INLA param] we define the step length for the numerical computation of the gradient
and Hessian of 7(0|y) at the mode. This is necessary because the default values do not always ensure a
positive definite Hessian matrix.

Figure 9: Posterior mean for the structured spatial effect f

The computation time is about 30 seconds on Machine 1 and 15 seconds on Machine 2.
Figure [9] displays the posterior mean of the spatial effect f, for all districts. To reproduce Figure [9] the
following R code has been used:

> source ("draw-map.r")
> spatial=read.table("results-0/spatial/summary.dat")
> germany.map (spatiall[,2])

The R code draw.map . r can be downloaded together with all the other example files.

Figure [T0] panel (a), displays the effect of the covariate ¢ (posterior mean) within 2.5 and 97.5% confidence
intervals. The covariate effect is not too far from a linear effect. We might, therefore, want to run a modified
version of the model in which the effect of ¢ is modelled as a linear function, that is

ni = 1+ fo(si) + Bei +u; (19)

To modify the DISEASE-COVARIATE. ini file in order to fit the new model it is enough to delete the
[ Covariate ] section, lines 28-38 and instead add the following section where [ is defined.

39



W =

(@) (b)

Figure 10: Effect of the covariate. Panel (a) nonparametric model and panel (b) linear model: posterior mean
within 2.5 and 97.5% confidence interval.

[ Covariate linear]
type=linear
covariates=covariate —linear.dat

The file covariate —linear. dat has the format
7 C;
The computation time for the linear-effect model reduces to 11 seconds for Machine 1 and to 6 seconds

on Machine 2. This is due to the fact that in the linear model both the latent field & and the vectors of
hyperparameters 0 are of lower dimensionality.

The estimated posterior mean for the slope parameter 3 is 0.0677 with posterior standard deviation 0.0126.
Figure panel (b), displays the linear effect of the covariate within 0.025 and 0.975 quantiles. To com-
pute the quantiles for the regression line in Figure [I0} panel (b), we have run the model described in the
DISEASE-COVARIATE. ini file fixing the log precision of the RW2 model to a high value. In this way the
RW?2 is forced to be a straight line.

3.7.1 Implementing using the INLA package for R

This example is very similar to the previous one, we only have one covariate more to add to the model. As
before we need to add one column to the data set because we have both a structured and an unstructured spatial
effect:

>data (Germany)
>Germany<-cbind (Germany, region.struct=GermanyS$Sregion)

The formula for the model with non parametric effect of the covariate is:

>formula<-Y~f (region.struct,model="besag", graph.file="germany.graph",
param=c(1,0.00005),initial=2.8)+f (region,model="1iid") +
f(x,model="rw2",param=c(1,0.05))+

while the one for the model with linear effect of the covariate is

>formula<-Y~f (region.struct,model="besag",graph.file="germany.graph",
param=c(1,0.00005),initial=2.8) +x+f (region, model="iid")

where the only thing changed if the model for x. In both case the call to the inla () function is
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>mod<-inla (formula, family="poisson",data=Germany, E=E,
control.inla=1list (h=0.01),verbose=TRUE)
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3.8 Mapping cancer incidence

We present a little more complicated example on the same line of examples[6and[7] Instead of observing only
one data point for each district, in the next example there are multiple observations sharing the same spatial
location. Therefore, a possible unstructured spatial effect needs to be coded in a different way than in the two
previous examples. The example is taken from |Rue and Held| (2005, Sec 4.3.5).

Example 8 The data are incident cases of cervical cancer in the former East German Republic (GDR) from
1979, stratified by district and age group. Each cases was classified as pre-malignant (coded as 0) or malig-
nant (coded as 1). For each of the ng = 6 690 cases in the data set, the age, age;, and the district, s;, of the
patient are available. The age was categorised into 15 age groups.

The data are assumed to be conditionally independent Bernoulli random variables:

yilni ~ B(p;) i=0,...,nq

with logit link function
__exp(mi)
1+ exp(m;)

2

The model for the latent variables is:

ni = p+ flage;) + fs(si) + fu(si)

where f(age) is the age group effect, modelled as a RW2 with precision parameter \y. The spatial effect of the
district s; is split into a spatially correlated part and an uncorrelated one. The spatially correlated element,
fs(+), is modelled as the intrinsic GMRF in equation with given neighbouring structure. The uncorrelated
part, f,(+), is modelled as by a i.i.d Gaussian effect. Note that, in this model, the unstructured spatial effect
fu(+), does not coincide with the unstructured term w; in equation , which was the case in Examples@and
2

There are three hyperparameters in the model @ = (log A¢,log As,log A\,). Following Rue and Held (2005),
we assume a LogGamma(1.0,0.01) prior distribution for log \s and log A, and a LogGamma(1.0,0.00005)
prior for log \t. Moreover we impose a sum-to-zero constraint on both f and f

The file CANCER-INCIDENCE. ini defining the model is:

[Cancer incidence]

type = problem
dir = results—%d
[Predictor]

type = predictor
n = 6690

initial = 15
fixed =1

[Likelihood model]

type = data
likelihood = binomial
filename = cancer.dat

[Age classes]

type = ffield
model = rw2
covariates = age—group—cov.dat
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n=15

constraint = 1
diagonal = 1.0e—4
parameters = 1 0.001

initial = 6.456745
quantiles =0.025 0.975

[Spatial]

type = ffield

model = besag

graph = ddr.gra

covariates = spatial —cov.dat
constraint = 1

diagonal = 1.0e—4
parameters = 1 0.0005
initial = 8.006793

[Spatial random effect]
type = ffield

model = iid

n = 216

parameters = 1 0.01
covariates = spatial —cov.dat

initial = 4.512093

[constant ]
type = linear

[ Parameters for INLA]
type = INLA
h = 0.01

Note that while in Examples [6] and [7] the spatial unstructured component in the model was coded in the
type=predictor section of the ini file, here, for the same purpose, we have to include a rype= ffield section
where model=iid (lines 37-43).

The model runs in about 90 seconds on Machine 1 and about 30 seconds on Machine 2.

In Figure[IT|the posterior mean of the non-parametric effect of the age group within 2.5 and 97.5% confidence
band is dispayed.

Figure 11: Nonparametric effect of age group. Posterior mean within 2.5 and 97.5% quantiles.
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3.8.1 Implementing using the INLA package for R

This is yet another example very similar to the previous two.

>data (Cancer)

>Cancer<-cbind (Cancer, region.struct=CancerS$Sregion)

>formula <- Y~f (region.struct,model="besag",graph.file="ddr.graph",
param=c (1,0.01))+f (Age,model="rw2",param=c(1,0.001))+
f (region, model="1iid")

>mod <- inla(formula, family="binomial",data=Cancer,Ntrials=N,
control.inla=1list (h=0.01))

The only difference is in the likelihood model used.
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3.9 Geoadditive model: Munich rental guide

In this section we present a slightly more complex example of geoadditive models where we have a higher
number of covariates in the data set. The example is taken from Rue and Held| (2005, Sec. 4.2.1).

Example 9 - Munich rental guide

The response variable y; is the rent (Euro per square meter) for a flat in Munich. There are three covariates to
be included in the model: the spatial location (s;), the floor space (size;) and the year of construction (year;).
Moreover for each data point we have a set of indicator variables such as whether or not the flat has central
heating, bathroom, a large balcony, etc. The data set consist in ng = 2 035 observations. There are 380
district in Munich, the floor size varies from 17 to 185 square meters and the year of construction goes from
1918 to 2001.

The model for the data is:
yilni ~ N (i, 1/Ay)
with
ni = p+ fs(si) + folsize;) + fi(year;) + 213 (20)

where fs(-) is the spatial effect modelled as the intrinsic GMRF in equation , fo(+) is the non parametric
effect of the floor size and fi(+) is the non parametric effect of the year of construction. Both fy(-) and fi(-)
are modelled as RW2 with unknown precision. The last term in models the covariates assumed to have
a linear effect. As usual we choose a Gaussian prior with known precision for the elements of vector 3. We
impose a sum-to-zero constraint on fs(-), fo(-) and fi(-).

The model has four hyperparameters 8 = (log A, log Ag,log Ao, log A\1). We assign to each precision a
LogGamma(1.0,0.001) prior. In this example we approximate also the posterior marginals for the four hy-
perparameters 0.

In the following we report part of the RENT. ini file which defines the model. We have omitted the part
defining most of the indicator variables since they are all defined in the same way.

[Rent in Munich]

type = problem

dir = results —%d
hyperparameters = 1
[Predictor term]

type = predictor

n = 2035

parameters = 1.0 0.001
initial = 10

fixed =1

[Data]

type = data
likelihood = gaussian
filename = rent.dat
parameters = 1 0.001
initial = -1

[floor—size]

type =ffield
model = rw2
covariates = size—covariate.dat
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24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
5

52
53
54
55
56
57
58
59
60
61

locations = size—loc.dat
diagonal = 1.0e—6
initial = 7

constraint = 1
parameters = 1 0.001
quantiles = 0.25 0.975

[spatial]

type = ffield

model = besag

graph = munich. gra

covariates = spatial—covariate . dat
diagonal = 0.00001

constraint = 1

initial = 0.4
parameters = 1 0.001
compute=1

[year]

type =ffield

model = rw?2

covariates = year—covariate . dat
locations = year—loc.dat

diagonal = 1.0e—6
initial =7
constraint 1
parameters 1 0.001
quantiles = 0.25 0.975

[constant ]
type = linear
precision = 0.01

[linear —beste . dat]

type = linear

covariates = beta—beste. dat
precision = 0.01

62 .

63 .

64 .

65
66
67
68
69

[INLA param]

type = INLA

int _strategy = GMRFLib_AI_INT _STRATEGY _CCD;
h = 0.01

The flag hyperparameters in line 4 section is turned on to indicate that also posterior marginals for the hyperpa-
rameters have to be computed. The results are displayed in Figure |12 and they agree well with tho use found
by [Rue and Held| (2005).

The new feature introduced in this example is the use of a different integration scheme to compute

Fzily) = Faily, 007 (Ok|y) A 21
k

When the dimension of the hyperparameters space grows, in fact, the grid integration scheme, which was used
in all previous examples and which is the default choice in the inla program, soon becomes too computa-
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Figure 12: Munich rent example: approximate posterior marginals for the hyperparameter of the model.

tionally intensive. The central composite design (CCD) integration scheme, defined in line 68, is an alternative
integration scheme which computes the integral in using much less points, still providing useful results.
Both integration schemes are described in [Rue et al.| (2007).

Figure[I6] panels (a) and (b), displays the posterior mean, within 0.25 and 0.975 quantiles, of the effect of the
floor size and the year of construction respectively.

To check the quality of the CCD integration scheme we run the model once more using the default grid
scheme (to do so it is enough to delete line 67). The results are plotted in Figure [13|as dotted lines, they are
indistinguishable from the CCD results despite the fact that the grid integration scheme used 115 evaluation
points to compute the integral in and the CCD one only 15.

The computing time for this model on Machine 1 is of 80 seconds if we use the CCD scheme and 250 seconds
using the grid scheme. On Machine 2 the computational time reduces to 30 seconds in the first case and 70 in
the second case.

3.9.1 Implementing using the INLA package for R

>data (Munich)

>formula <- rent~f (location,model="besag",graph.file="munich.graph",
param=c (1,0.001),initial=3.5)+
f (year,model="rw2",param=c(1,0.001),initial=4)+
f(floor.size,model="iid",param=c(1,0.001),initial=7)+Gute.Wohnlage+
Beste.Wohnlage+Keine.Wwv+ Keine.Zh+ Kein.Badkach+ Besond.Bad+
Gehobene.Kueche+ ziml+zim2+ zim3+ zim4+ zimb5+ zim6

>mod <- inla(formula,data=Munich, control.inla=1list (h=0.01),
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Figure 13: Munich rent example: semiparametric effect of the floor size (a) and of the year of construction
(b). The posterior mean within 0.025 and 0.975 quantiles is displayed. The solid line is the result of the CCD
integration scheme and the dotted line is the result of the grid integration scheme.

control.data=list (initial=-1))
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3.10 Geoadditive model: Zambia children undernutrition

The second example of geoadditive model with several covariates is from |Kandala et al.| (2001)) and is one of
the worked out examples in the BayesX web page.

Example 10 - Undernutrition of children in Zambia. Undernutrition in children is measured determining
the anthropometric status of the child relative to a reference standard. In our example undernutrition is
measured by stunting, or inefficiency height for age, indicating chronic undernutrition. Stunting for a child i
is determined using a Z score defined as

AL — MAI

g

Z;

where Al refers to the child’s anthropometric indicator, M Al refers to the median of the reference population
and o refers to the deviation of the standard population.

The main interest is on modelling the dependence of undernutrition on a set of covariates including the age of
the child (age;), the body mass index of the child’s mother (bmi;), the district the child lives in (s;) and some
further categorical covariates. The data set consists in ng = 4846 observations. For more details about the
data set see|Kandala et al.|(2001) and |Kneib et al.|(2004)).

We assume the scores Z; to be conditionally independent Gaussian random variables
Zilni ~ N(ni, 1/Ay)

and
mi =+ fo(bmis) + fi(age,) + fo(si) + ful(si) + 2! B

where fo(-) and f1(-) are the semi parametric effect of the mother’s body mass index and the age of the child
respectively. fs(+) is the structured spatial effect of the district, f,(-) is an unstructured spatial effect and
z; are a set of categorical covariates. We model the spatial structured effect fs(s;) as the intrinsic GMRF in
equation and fo(-) and f1(-) as RW2. The unstructured spatial effect f,,(s;) is modelled by i.i.d. Gaussian
random variables. We impose a sum-to-zero constraint for fs(-), fo(-) and fi(-).

In this model there are five hyperparameters @ = (log Ay, log s, log Ay, log Ao, log A1) and we assign a vague
LogGamma prior distribution to each of them.

[ Zambia model]
type = problem
dir = results —%d

[Predictor term]

type = predictor

n = 4846

prior = loggamma
parameters = 1.0 0.005
initial = 10

fixed =1

[Data]

type = data
likelihood = gaussian
filename = zambia. dat

parameters = 1 0.005
initial = 0.2
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[spatial]

type = ffield

model = besag

graph = zambia. gra

covariates = spatial _covariate . dat
diagonal = 0.00001

constraint = 1

initial = 3.6

parameters = 1 0.005

[spatial predictor]
type = ffield

model = iid
3 covariates = spatial _covariate.dat
n =57

diagonal = 0.00001
initial = 5.4
parameters = 1 0.005

[agc]

type = ffield

model = rw2

covariates = agc.dat
3 n=60

diagonal

= 0.0001
constraint = 1

initial = 6.6
parameters = 1 0.005
quantiles = 0.025 0.975

[bmi]

type = ffield

model = rw2

covariates = bmi_covariate . dat
locations = bmi.location
diagonal = 0.00001

constraint = 1

initial = 6.2
parameters = 1 0.005
quantiles = 0.025 0.975

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

type=linear

type=linear
covariates

type=linear
covariates

type=linear
covariates



77
78
79
80
81
82
83
84
85
86

type=linear

covariates = sex.dat
[tpr]

type=linear
covariates = tpr.dat

[INLA param]
type = INLA
int_strategy = CCD;

Also in this example we use the CCD integration scheme to compute the integral in (21).

(a) (b)

Figure 14: Results for the Zambia example. Panel (a) and (b) displays the posterior mean of predictor n and
of structured spatial effect respectively. Panel (c) and (d) display the posterior mean, within 0.025 and 0.975
quantiles, of the age effect (c) and of the mother’s body mass index (d)

In Figure [T4] panels (a) and (b), the posterior mean of the predictor and of the structured spatial effect is
displayed. The effect of the age of the children is in Figure [I4] panel (c). It shows a clear non linear pattern.
The effect of the mother’s body mass index (Figure [I4] panel (d)) instead is more regular and could probably
be substitute in the model formulation by a linear effect.

The computation time is about 4 minutes on Machine 1 and 1 minute on Machine 2.
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3.11 Log-Gaussian Cox processes

The particular feature of our next example is that data are registered on a regular grid of dimension 7,4y X Ncof,
where 1,4, 1s the number of row and n.,; the number of columns. Unlike all the previous examples then,
each data is identified by two indexes (irow, jeol) indicating respectively the row and column the data point
belongs to. However, as inla only understand one-dimensional indices, we have to map the coordinates into
a one-dimensional index k

k= jeol + frow X Ncol

fori =irow = 0,...,Now —1land j = jeot =0, ..., nco — 1. This following example is taken from Rue et al |
(2007).

Example 11 Log-Gaussian Cox processes (LGCP) are a class of models used for modelling spatial point
processes, see for example Mgller and Waagepetersen|(2003)). A LGCP is a Poisson point process. Y € W C
R with random intensity function \(€) = exp(Z(€)), where Z (&) is a Gaussian field and € € W. It is
common practice to discretise the observation windows W into N = nyoyy X Neo) disjoint cells {s;; }with area
|sij| where i =0,...,Npow —land j =0,... 1y — 1.

Let y;; be the observed number of occurrences of the realised point pattern within s;;. Let 1;; be the random
variable Z(§,;). The likelihood of the model is

Yijlnig ~ Po(|si;] exp(nij))
while, as usual the latent variable vector m is part of a larger GMRF.

In this example, the data consist in the locations of a particular tropical tree species ( Beilschmiedia pendula
Lauraceae) registered in a 50-hectares plot in the tropical moist forest of Barro Colorado Island in central
Panama. For more information about this study see\Waagepetersen| (2006). The 3605 tree locations are plotted
in Figure [0} panel (a). We divide our region of interest into a 201 x 101 regular grid, where each square pixel
represent an area of 25 squares meters. Together with the data y;;, we observe, the mean elevation and the
mean norm of the gradient for each area on the grid. These covariates are believed to influence the behaviour
of the tree under examination. A scaled version of these covariates is displayed in Figure [I3] panels (b) and
(c). The model for the latent variable n;; is

K

80

60

40

20

Figure 15: Data and covariate for the LGCP example: panel (a) displays locations for the 3065 trees, panel
(b) displays the altitude and panel (c) the norm of the gradient.

Nij = i+ Braltiy + Bagrad;; + fs(sij) + wij

where alt;j and grad,; are the values for the two covariates at location (i,7), fs is the spatial structured effect
of the location and w;j is the unstructured random effect.

For the spatial structured term f , we use a second order polynomial intrinsic GMRF with unknown precision

M. See|Rue and Held (2005| Sec 3.4.2) for a thorough definition of intrinsic GMRF models on a lattice. We
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use vague Gaussian priors for i, 51 and (3. The unstructured terms u;; are independent N'(0,1/\,,) random
variables. Notice that the latent field x = (1, f , i, b1, B2) in this example has dimension 40 605.

The hyperparameters are @ = (log A¢,log \,) are are assigned vague LogGamma priors.

[Tropical rainforest data]

N = WY, T SO OCR S R

type = problem
dir = results —%d

[Poisson data]
type = data
likelihood = poisson

filename = data—full.dat

[Predictor term]
type = predictor
n = 20301
initial =1

[Spatial smoother]
type = ffield

covariates=spatial —full . dat

nrow=101
ncol=201
model = rw2d
constraint=1
initial=1

[ Constant ]
type = linear

[Altitude Covariate]
type = linear

covariates = altitude —full . dat

[ Gradient Covariate]
type = linear

covariates = gradient—full.dat

[INLA parameters ]
type = INLA
strategy = GAUSSIAN

The data file data—full . dat has the following format

ko [skl ok

where k = j 4+ ¢ X Mo, © = 0, ..., Nypow — 1 s the row index and j = 0,. .., n.y — 1 is the column index.

Notice also that it is required for the user to specify the number of rows and columns in the data set (18 — 19).
For grid observed data, the fields nrow and ncol are substituted by n which we have used in all previous
examples. (In this example n = 20301 = 101 x 201.)

The results are displayed in Figure [[6] Panel (a) shows the posterior mean of the structured spatial effect.
Following is the R code used to produce Figure [16]a):

> library(fields)
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Figure 16: LGCP example: (a) posterior mean of the spatial effect f(+), (b)-(d) posterior marginals for y, 31
and (o

xcoord=5xseq (0, 200)

ycoord=5xseq(0,100)

space=read.table ("results—-linear(0/spatial-smoother/summary.dat")

image.plot (xcoord, ycoord, matrix (space[,3],ncol=101, byrow=F),
col=gray (seq(0,1,1en=1000)))

vV V. V V

Panels (b)-(d) show the posterior marginal distributions for the parameters pu, 31 and Js.

The graph of the full model for this example contains 40605 nodes, this makes the computation procedures
heavier that for all other examples considered here. The computational time required to solve the model grows
then to about 50 minutes on Machine 2. We have not run the model on Machine 1.
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3.12 A longitudinal study example - Forest health data

Our last example is a longitudinal study on forest health. The aim of the study if to identify potential factors
influencing the health status of the trees. In addition to covariates characterising a tree and its stand, spatial
and temporal information are also available. The example is taken from Kneib and Fahrmeir| (2008)), an earlier
version of the data set is analysed in [Kneib and Fahrmeir| (2006).

Example 12 The data have been collected annually in a visual forest health inventories between 1983 and
2004 in a northern Bavarian district. There are 83 observations plots within an area of around 15 squared

kilometres.

Every year, in some of the 83 observations plots the health status of the tree y;, t = 0,...,83,t =0,...,21,
is registered. Not all plots are observed every year, so the data set has in total ng = 1796 observations. In the
original data set there are 9 categories for tree health, anyway, here we consider only two: healthy or non-
healthy. Together with the tree health status, several covariates are registered year after year at the different
observation plot. All covariates are summarised in Table|2| Moreover the location of each registration plot s;

Covariate Description

Age age of the stand in years (continuous between 7 and 234 years)
elevation elevation above the sea level (continuous, between 250 and 480 meters)
inclination | inclination of the terrain in percent (continuous between 0 and 1)
soil depth of soil level (continuous, between 9 and 51 cm)

ph ph-value in 0-2cm depth (continuous, between 3.28 and 5.05)
canopy density of forest canopy in percent (continuous, between 0 and 1)
stand type of stand (categorical, 3 categories)

fertilisation | fertilisation (categorical: yes or no)

humus thickness of humus (categorical, 5 categories)

moisture level of moisture (categorical, 3 categories)

saturation base saturation (ordinal)

Table 2: Forest health data: description of covariates.

is known. The spatial distribution of the locations is displayed in Figure[I7
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Figure 17: Forest health example: location of the 83 observation plots.

The likelihood of the data is binomial:
Yit|mie ~ Bin(pi)
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Following |Kneib and Fahrmeir (2008) we model the latent variables as:

i=0,...,82,t=0,...,21.

M = 1+ folagey) + fi(inclination;) + fa(canopyy) + fime(t) + fs(si) + fu(si) + 258 (22)

where fo(-), f1(+), fo(+) are the semiparametric effect of age of the tree, inclination and canopy of the location
respectively, while fime(-) is the non parametric effect of time. Each semiparametric function is modelled as
a RW2 with unknown precision parameter. The vector zz; includes all covariates in Table |3| not mentioned
before which are assumed to have a linear effect. Finally f4(-) and f,(-) indicate the structured spatial effect
and the unstructured one.

We models the spatial structured effect as the intrinsic GMRF in equation ([I5). We build the graph for such
a model by considering two observation plots as neighbours if their distance is less than 1200 meters. The
spatial unstructured effect is modelled as a series of uncorrelated Gaussian random variable.

We can cast the model in in the general formulation in equation (2)) by defining a new index r = (i, t),
r=20,...,nqg — 1, and rewriting the model as

n, = p + folage,) + fi(inclination,) + fo(canopy,) + fime(r) + fs(sr) + fu(sy) + 213 (23)

The above model has six precision hyperparameters @ = (log Ao, log A1, log A2, 1og Nime, log A, log Ay,), each
is given a vague LogGamma prior.

We report part of the ini file which defines the model. We have omitted the definition of almost all covariates
with linear effect.

[Forest damage]
type=problem
dir=results —%d

[predictor term]
type=predictor
n=1796

initial = 10
fixed=1

[Data]

type=data
likelihood=binomial
filename=damage. dat

[spatial]

type=ffield

model=besag
graph=forest. gra
covariates=spatial.covariate
diagonal = 0.00001
constraint = 1

initial = —3.346165
parameters = 1 0.001

[spatial —unstruct]

type=ffield

model=1iid
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n=83
covariates=spatial.covariate
diagonal = 0.00001

constraint = 1

initial = 7.324791
parameters = 1 1

[age]

type = ffield

model = rw?2

covariates = age.covariate

locations=age.location
diagonal = 0.0001
constraint = 1

initial = 5.674807
parameters = 1 0.001
quantiles = 0.025 0.975

[canopy]

type = ffield

model = rw?2

covariates = canopy.covariate
locations=canopy.location
diagonal = 0.0001

constraint 1

initial = 13.763045
parameters = 1 0.001
quantiles = 0.025 0.975

[inclination]
type = ffield

model = rw2

covariates = inclination.covariate
n=47

diagonal = 0.0001

constraint = 1

initial = 6.422709
parameters = 1 0.001
quantiles = 0.025 0.975

[time]

type = ffield

model = rw2

covariates = year.covariate
locations=year.location
diagonal = 0.0001
constraint = 1

initial = 1.211905
parameters = 1 0.001
quantiles = 0.025 0.975

[ common mean |
type=linear

[soil]
type = linear
covariates = soil.cov
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[INLA parameters ]
type = INLA
int_strategy = CCD;
h = 1.0e-2;

Notice that when using the inla program we treat all covariates, including space and time in the same way.
All covariates files have the same structure.

Again we use the CCD strategy in order to integrate out the uncertainty about the hyperparameters 6. Given
the high dimension of the hyperparameters space, the CCD strategy gives a much lower computation time if
compared to the grid strategy. We have compared the results coming from the two integration strategies and
the differences are irrelevant.

In Figure |18|the results about the semiparametric effects are displayed. The posterior mean is plotted within
0.025 and 0.975 posterior quantiles. The results agree very well with those found by |Kneib and Fahrmeir
(2008).
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Figure 18: Results for the forest health example, semiparametric effect of covariates, posterior mean within
0.025 and 0.975 quantiles: age of the tree, panel (a), canopy, panel (b), inclination panel (c) and time panel
(d).

The model runs in around 9 minutes on Machine 1 and around 4 minutes on Machine 2. Much of the time is
used by the optimiser to find the maximum of 7(6|y) and to compute the Hessian at the modal configuration.
When the hyperparameter space is high dimensional it is possible that the optimiser fails to succeed at a first
attempt. The problem is usually solved by running the inla program again starting from different initial
values for the hyperparameters. It is, usually, a good idea to start from the best configuration found during the
previous run.
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If one is interested in spatial prediction of tree health outside the observation plots, the spatial model in (T3)
is not very useful. We could instead use a second order random walk defined on a regular grid (Rue and Held,
2005}, Sec 3.4.2) built as following. We divide the region of interest in 1,4, X Neop cells, with 1,4,y = 50 and
Neor = 100. We then build a new covariate file, spatial —covariate—rw2.dat, where, to each data point y, are

assigned two indexes n,.,,, and n! ,; indicating its the location of the data on the 72,0, X 7 grid.

The code for the ini file substituting section [ spatial ] (lines 16-24) and [ spatial —unstruct] (lines 26-34) is
the following:

[spatial]

type=ffield

model=rw2d

covariates=spatial —covariate —rw2. dat
nrow=50

ncol=100

constraint=I1

parameters = 1 0.001

initial= —1.570568

The new model has one hyperparameter less than the previous one since no spatial unstructured effect is
present, but the number of nodes in the latent field x is increased, therefore running the new model will take
longer time.

The results for the spatial effect in the new model is displayed in Figure[I9] The non parametric effects of the
other covariates do not change significantly.

5 10 15

Figure 19: Posterior mean estimate for the spatial effect modelled as a RW2d

Kneib and Fahrmeir (2008]) propose to include in the model for the latent variable an interaction between the
age of the tree and the calendar time, so that the model becomes:

nit = p+ fi(inclination;) + fa(canopy,;)
fa(t,agey,) + fs(si) + fulsi) + 21 (24)

where the spatial effect f4(-) is modelled as in and f4(-) is the interaction effect between time and age of
the tree modelled as a RW2d.

We can include the term fy4(+) in equation (24)) in a similar way as we did earlier in this same example for the
RW?2d spatial effect. We just create a new covariate file, year. age—covariate, with the format

r t age,

where both time and age are recorded, and delete from the ini on page [56] section [age] and [time] while
adding the the following lines:

[year—age interaction ]
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2 type=ffield

3 model=rw2d

4 covariates=year.age—covariate
s nrow=22

6 ncol=223

7 constraint=1

s diagonal = 0.01

9 parameters = 1 0.01

0 initial= 2.025712

The new model has 5 hyperparameters and the total number of nodes in the latent field is 6939. We run the
model on Machine 2 and the computation time was around 30 minutes using a CCD integration strategy.

The posterior mean and standard deviation of the interaction effect are displayed in Figure [20] panel (a) and

(b) respectively.
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Figure 20: Interaction effect between age of the tree and calendar time in Model (24). Panel (a) posterior

mean, panel (b) posterior standard deviation.
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3.13 Survival analysis - Weibull Model

[[[ This survival-section needs a rewrite due to a change in the input format!!! These examples are no longer
valid. 1]]

Survival data are often right censured, meaning that the exact survival time is known only for a fraction of the
individuals under study, the remainder of the survival times are known only to have exceeded a certain value.
Suppose that there are n individuals under study and that associated with the i** individual is a survival time ¢;
and a fixed censuring time ¢;. The ¢;’s are supposed to be independent and identically distributed with density
f(t) and survival function S(¢). The exact survival time is known only if ¢; < ¢;. The data in this framework
will then be represented by the n pairs of random variables (y;, ;) where:

Y; = min(ti, Cl')

and

= 1 ift; <g¢
v 0 ift; > ¢

is the event indicator variable.

In this example we use simulated data.

Example 13 We observe a series of n survival times with associated the corresponding event indicator
{(y1,v1)s- -, (Yn,vn)}. Moreover for each of the n individuals we observe a covariate x. The survival
times are assumed to be iid and follow a Weibull distribution:

y; ~ Weibull(a, ;)
We model the effect of covariate by letting \; be a function of the observed covariate

logvi=n=p+B+x;

w and (3 are assigned Gaussian priors with known precision. To complete the model we assume a Gamma
prior for the parameter o
a ~ Gamma(a, b)

The corresponding ini file is the following:

[Problem ]

type = problem

dir = results —%Id
hyperparameters = 1

[Predictor]

type = predictor
n = 100
initial 10

fixed =1

[Data]

type = data

likelihood = weibull
filename = weibull—data. dat

[Mean]
type = linear
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20
21
22
23
24
25

[Linear]
type = linear
covariates = weibull—covariates . dat

[INLA parameters ]
type = INLA

The data file for the survival models has the following format
tCi Y

The rest of the model specification is similar to all previous examples.

3.13.1 Implementing using the INLA package for R

>data (SurvSim)
>mm=surv.inla (y~x,data=SurvSim, event=cens, family="weibull")
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3.14 Survival analysis - Weibull model with log-normal frailties

[[[ This parts needs a rewrite as the R-interface has changed. ]]]

In studies if survival, the hazard function for each individual may depend on a set of risk factors or explanatory
variables but usually not all such variables are known or measurable. This unknown factor of the hazard
function is often termed as the individual heterogeneity of frailty.

The most common type of frailty model is called the shared-frailty model, which is an extension of Cox
proportional hazard model. Let y;; denote the survival time for the 4% individual in the i*" cluster, i =
1,...,nand 7 = 1,...,m;. Let m; represent the number of cluster in the ith cluster and therefore we have
a total of N = ) m; subjects. In the shared frailty model we assume that the conditional hazard function of
i; given the unobserved random frailty w; for the it cluster and the fixed covariate vector x;; is given by:

h(ylwi, ;) = ho(y) wi exp(m;8) = ho(y) exp(b; + x};0) (25)

where b; = log(w;), B is a vector of unknown parameters assumed to have a Gaussian prior, x;j is the
observed covariate vector for the j** individual in the i*" cluster, and hq(-) is an unknown baseline hazard
function.

We assume the vector b = {by, ba, ... } to be i.i.d Gaussian with unknown precision x which, as usual is given
a Gamma prior. The frailty is simply a random effect of the model like those seen in the previous examples

Example 14 We want to study the times of infection from the time of insertion of catheter on 38 kidney patients
using portable dialisis equipment (McGilchrist and Aisbett, [1991). For each patient the time for the first and
second infection is reported, each time can be either an event (infection) or censured (no infection until that
time). The covariates taken into account are the sex of the patient, the age at the time the infection has taken
place and the type of disease (4 possible types). The last covariate is qualitative and therefore it is coded using
3 dummy variables. The covariate vector is therefore (ageij, sex;, disease;1 , disease;s, disease;s), for ease of
exposition we label these covariates as (xij1, Tij2, Tij3, Tija, Tij5). Moreover we assume a Weibull model for
the unknown baseline hazard ho(-). The model is thus given by:

Yij ~ W, i)
wherei=1,...,38and j = 1,2. And
nij = log(vij) = Bo + Brxij1 + Boijo + B3x4j3 + Baija + B5xij5 + b;

where b; ~ N'(0, k~1). Following Spiegelhalter et al.|(1995) we take 3 ~ N(0,10°I), k ~ Gamma(10=4,107%)
and o ~ Gamma(1,107%)

The corresponding ini file is:

1 [Model]

2 type = problem

3 quantiles = 0.025 0.975
4

s [Data]

¢ type = data

7 likelihood = weibull
s filename = time . dat
o initial = 0.2

10 parameters = 1 le—04
11

12 [Predictor]
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type = predictor
n= 76
fixed =
compute = 1
initial 10

~

[Intercept]
type = linear

[age]

type = linear
covariates = age.
precision = le—05

[sex]

type = linear
covariates = sex.
precision = le—05

[disl]

type = linear

covariates = disl .dat

precision = Ile—05

[dis2]

type = linear

covariates = dis2.dat

precision = le—05

[dis3]
type = linear

covariates = dis3 .dat

precision = le—05

[frailty]
type = ffield

model = iid

covariates = frailty —cov. dat

diagonal = 1.0e—6

dat

dat

locations = frailty —loc.dat
3 parameters = le—04 le—04

3.14.1 Implementing using the INLA package for R

>data (Kindey)
>formula = time~aget+sex+disl+dis2+dis3+f (ID,param=c (10"~ (-4),10"(-4)))
>
>model=surv.inla (formula, family="weibull", event=event,data=Kidney,
control.fixed=1list (prec=10"(-5)),
control.data=1list (initial=0.2,param=c (1,107 (-4))))
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3.15 Survival analysis - Model with piecewise constant hazard

An alternative to choosing a parametric model for h¢(+) in equation is to construct a piecewise exponential
model. We first divide the time axis into J pre-specified intervals I, = (sx_1, sx] for k = 1,2,...,J where
0=150 <581 <--- <8y <00, sybeing the last survival or censured time and assume the baseline hazard to
be constant with each interval. That is:

ho(y) = Ag, fory € I.

Following Gamermann| (1991) we model €;, = log(\) as a random walk of first or second order with unknown
precision.

The model for the hazard function for y;; given the unobserved random frailty w; for the ith cluster and the
fixed covariate vector x;; is given by:

7
h(yijlwizis) = exp(b; + x};3) (Z Ak1y¢j61k>
k=1

where 1, ¢y, indicates if y;; belongs to interval I,. Moreover, as in the previous example x;; are observed
covariate, (3 are unknown parameters with a Gaussian prior and b;’s are the log frailty effect assumed to be
i.i.d. and Gaussian distributed.

It turns out that such piecewise constant hazard models can be written as models with Poisson likelihood
where the log mean is a linear function of all covariates and random effects, included the piecewise constant
baseline hazard.

Example 15 We consider again the Kindey infection data set seen in example[I4]this time assuming a piece-
wise constant baseline hazard with a random walk prior for log(\), with precision T = 10™%. We consider
this time only sex and age as covariates so that the proportional hazard’s component is

exp(:lzg;ﬁ) = exp{ﬂsexsexi + /Bageageij}

We assume r ~ Gamma(0.001,0.001) and B N'(0,1073). Moreover,we choose J = 10

The R code to implement the above model using the INLA library is the following:

>data (Kidney)

>formula = time~aget+sex+f (ID,param=c(0.001,0.001),initial=0.6)

>

>Model=surv.inla (formula, family="piecewise.constant",n.intervals=10,
data=Kidney, event=event,
control.fixed=1list (param=c (0,107 (=3))),
control.hazard=list (initial=log (10~ (-4)), fixed=1))
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4 The GENERIC1-model

The GENERIC1 model implements the following precision matrix

g

)\max

Q=7I-1—0C)

where the C-matrix is specified in the argument Cmatrix = <filename>, using the
i j Cij

format (as for the GENERICO model). Apax is the maximum eigenvalue for matrix C', which allow [ to be in
the range 3 € [0, 1). The hyperparameters are @ = (7, ) and the internal representations are

T = exp(Tintern)

and
ﬁ exp (5intern

1 + eXp(ﬁintern)

5 The RW2DX3-model

This is a specialised model for a certain application, for which the linear predictor require three different con-
tributions from the RW2D model. Similar to the “2diidwishartpart0/1” and “3diidwishartpart0/1/2”” models,
this is also defined similarly.

Let zp be a RW2D model with precision , then define z; and z» conditionally on zg, as
z1 | zo ~ N(Bizo, k1I)

and
zZ92 ’ zg ~ N(ﬂQZO,RQI).

The joint density 7 (2o, 21, 22 | K, K1, k2, 51, 32) is then proportional to

exp (38R0 — 21 = Prza) (21— Brz) — "2 e2 — Baso) (52 — )

where Q(k) is the precision matrix for the RW2D model.

The models components are named as rw2dx3part0 for zg, rw2dx3partl for z; and rw2dx3part2
for z9. The hyperparameters are

0 = (k, K1, K2, B1, Ba2)-

6 Zero-inflated likelihood-models

inla support two types of zero-inflated models; type O and type 1. These are defined for both the Binomial
and the Poisson likelihood. For simplicity we will describe only the Poisson as the Binomial case is similar.
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6.1 Type0

The (type 0) likelihood is defined as
Prob(y | ...) = p x 1yy—g + (1 — p) x Poisson(y | y > 0)

where p is a hyperparameter where
_ exp (pintern )
1 + eXp(pintern)

and pineern 1 the internal representation of p; meaning that the initial value and prior is given for piperm. This
is model is called

zeroinflatedpoissonO and zeroinflatedbinomialO

6.2 Typel
The (type 1) likelihood is defined as
Prob(y | ...) = p X 1,—g + (1 — p) x Poisson(y)

where p is a hyperparameter where
_ €xp (P intern )
1+ exp(pintern)

and pineern 18 the internal representation of p; meaning that the initial value and prior is given for piper. This
is model is called

zeroinflatedpoissonl and zeroinflatedbinomiall
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7 Negative Binomial

For negative Binomial responces, the likelihood is

I'(y+n)

Prob(y) = Sty + 1)

p"(1—p)¥

fory =0,1,2,.... Note that n > 0 does not need to be an integer.

The mean of the negative Binomial is expressed as

p = Eexp(n)

where 7 is the linear predictor and the hyperparameter n (or the “size”) plays the role as an overdispersion
parameter. The internal representation is
n = exp(f).

The mean and variance of y are given as
W=n—-— and o? = p+ p?/n.

As n — 00, we get back to the Poission distribution. The negative Binomial model is specified with the same
data-format as for the Poisson case, but with the name nbinomial and the overdispersion hyperparameter

6.
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8 Quantile-regression and the asymmetric Laplace-distribution

A likelihood models of the following type

m(yln) oc exp (=7 pa(y —n))

alz| ifx>0
Pa(33> = .
(1—a)lz| ifzx<0

is both used for Laplace-distributed observations, but can also be justified from a quantile-regression point of
view.

where

The Laplace distribution is algorithmically awkward, as the second order derivative of logm(y|n) is zero
(except at y = n) but logw(y|n) still has an “overall curvature”. We chose to approximate the Laplace
distribution using

B (2) = {10g(608h(a'7!wl))/7 ifz>0
o,y log(cosh((1 — a)y|z|))/y ifz <0

which has second order derivatives everywhere. The parameter v > 0 is fixed, and the approximation tends to
|x| as v — oo; see Figure Additionally, there is an optional quadratic term that, “hopefully”, might stabilise

abs(x)

Figure 21: The function |x| and the approximation log(cosh(vx)) /v fory = 1/2, 1 and 2. The approximation
improves for increasing +.

the optimisation algorithms,

G ()= {log(cosh(owlw))/v + e(ax)? if 2 > 0
log(cosh((1 — a)vla))) /v + Le((1 — a)z)? ifz <0

Both « and € are constants, and & = 0.5, v = 1 and € = 0.01 by default. The inverse-scale 7 is stochastic by
default.
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The data format is as for the Gaussian likelihood with a weight term w for 7, so for the ith observation, then
7; = w;T. The parameters «, € are specified as

likelihood = laplace

filename = S$DATADIR/file5adcfl6c
alpha =
epsilon

o
o o
=

gamma =
fixed =
initial

o =l

which also state that 7 is stochastic with initial value exp(0).

From within R, then the parameters « and € is specified in the control . data argument as

., control.data= list (alpha = 0.5, epsilon = 0.01], gamma = 1.0),

and the family-name is laplace.

9 Model assessment and model choice

For the material in this section refer to the revised version of Rue et al.| (2007)

9.1 Marginal Likelihood

The marginal likelihood for a certain model M, defined as

(Y| M) = /W(y,:zz,0|/\/l) da dO

can be used as a basis for model comparison. The Bayes factor for two competing models is in fact defined as

o m(Mly)m (M)
B(i, j) = (26)
m(Mjly)m(M;)
If we choose the models to be apriori equal probable, (M) = - -- = (M), then the Bayes factor reduces
to
o m(y|M;)
B(i,j) = ===
m(y|lM;)

Hence, we can compare models by comparing their marginal likelihood 7 (y|M}).

NB: For to be well defined it is necessary for the prior of the latent field 7(x|0) to be proper. For
intrinsic models, in fact, there is an arbitrary missing constant which cannot be determined, see for example
Gelfand|(1996).

Using the INLA approach, the marginal likelihood for a certain model M, 7(y| M) can be computed as the
normalising constant of 7(6|y) using two different approaches:

1. Via numerical integration of 7(0|y)

2. Assuming a Gaussian approximation to 7(0|y)
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see|Rue et al.| (2007} Revised version) for details. Using the inla program it is enough to set the m1ik flagin
the section t ype=problem to 1 for the marginal likelihood to be computed. The first approximation (which
is more accurate) is computed only if in the type = INLA section, int_strategy = CCD is selected.

Example 16 We want to check which one, between a Gaussian and a Student-t error is more appropriate to
describe the dollar-pound exchange rate data set in Example 3.

It is enough to add to the first section of the corresponding ini the line

mlik =1

The output is stored in the file results/marginal-likelihood/marginal-likelihood.dat which contains both appro-
ximations for the log marginal likelihood of the model, log 7 (y|M).

For the Gaussian error model in (8)) we have

log marginal—likelihood (integration): —933.258
log marginal—likelihood (Gaussian): —933.324

while for the Student-t model in the result is

log marginal—likelihood (integration): —934.997
log marginal—likelihood (Gaussian): —935.233

In this case the Gaussian error model is preferred.

Note that in the volatility model example we have considered, the prior for the latent model x is an autoregres-
sive model of order one. This is a proper model, therefore the marginal likelihood gives a reasonable tool for
model comparison. If we would have chosen, for example, a RW1 model (or any other intrinsic distribution)
as prior for the latent volatility the marginal likelihood computed would have been meaningless.

9.2 Deviance Information Criterion (DIC)
Deviance information criterion (DIC) is a criterion for comparing complex hierarchical models introduced in
Spiegelhalter et al.| (2002) and defined as:

DIC =D +pp 27)

where D is the posterior mean of the deviance of the model and p, is the effective number of parameters in
the model, see Spiegelhalter et al.[|(2002). Details on how to compute the quantities in equation using the
INLA approach are described in|Rue et al.| (2007, Revised version).

To compute the DIC using the inla program it is enough to set the flag dic in the section rype=problem to 1.

For example, if we want to compute the DIC for the two disease mapping models considered in Section
it is enough to add to the first section of the corresponding ini file the line:

dic = 1

The result is printed in the output of the inla program, moreover it is stored in the file:

results/dic/dic.dat

which contains four quantities: the mean of the deviance, the deviance of the mean, the effective number of
parameters and the DIC.

For model (18)) in Section which assumes a non-linear effect of the covariate, the dic.dat file is the
following:
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mean of the deviance: 2652.86

deviance of the mean: 2563.22

effective number of parameters: 89.6438
dic: 2742.51

We can compute the DIC also for model (19), which assumes a linear effect of the covariate, obtaining:

mean of the deviance: 2655.87

deviance of the mean: 2552.33

effective number of parameters: 103.542
dic: 2759.42

The difference in DIC values is 16.91 in favour of model (I8 which suggests that the effect of the exposure
covariate is better represented by a non linear function.

9.3 Predictive measures

Predictive measures can be used both to validate and to compare models (Gelfand, |1996}; |(Gelman et al., 2004)
and as a device to detect possible outliers or surprising observations (Pettit and Young, 1990). Using inla it
is possible to compute Conditional Predictive Ordinates (CPOs) and Probability Integral Transforms (PIT).

Conditional predictive ordinates (CPOs) are defined as:
CPO; = m(yily_;)

where the subscript —¢ indicates that element 7 of the vector is removed. CPOs are discussed among others
by Pettit| (1990) and |Gelfand| (1996).

Unusually small or large values of CPO; indicate a surprising observation. Anyway, before being compared,
the CPOs have to be calibrated. One of the possible calibration procedures is to compute the probability
integral transform

PIT; = Prob(y;*" < yily_;)
see also|Gneiting and Raftery|(2007). An unusual large or small value indicates possible outliers. Furthermore,
an histogram of the PITs far from uniform might indicate a questionable model (Czado et al., 2007)).

In the inla program to compute CPOs and PITs it is sufficient to add in the type=problem section of the ini
file the line

cpo = 1

The results will be stored in the results/cpo/ directory in the two files cpo.dat and pit.dat.

Due to how 7(x;|y_;, 8;) are computed, there may be cases where this computation “fails’ﬂ; due to inaccurate
tail behaviour of 7(x;|y, 8;). To monitor the reliability of the CPO and PIT values computed, inla as a
FAILURE variable computed for each i (or ¥;), and the file failure.dat contains the expected failure (wrt )
for each 7, where the failure is defined as follows.

o If 7(x;|y_;, 0;) is monotone increasing or decreasing, then failure is set to 1 and then 7(x;|y_;, 0;) is
set to the O-function. In this case, 7(x;|y_;, 8;) is known to be just wrong.

o If 7(x;|y_;, ;) is has a (local) maximum either at min{x; } or at max{x;}, then 7(x;|y_;, 0;) is set to
zero in that part where 7(x;|y_;, 8;) is decreasing (starting from min{z;}) or increasing (starting from
max{z; }). The failure is in this case set to 0 (no failure), unless the difference in log-scale between the
maximum and leftmost (or rightmost) value of 7(x;|y_;, 8;) is less than CPO.DIFF (default is 3).

IThis is a feature not a bug.
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When the expected failure is 0 then the computed value of CPO and PIT seems to be reliable, and when the
expected failure is 1 then the computed value of CPO and PIT is known to be completely unreliable.

As an example we consider the volatility model with Gaussian observation in Example 3. The corresponding
PIT values are plotted in Figure [22|a). There are three observation whose PIT is close to 0, namely 331, 656
and 862. Figure [22[b) displays the histogram of the PIT values which is reasonably close to uniform.

1.0
|

009,93 § 0 &O%O&%OOO%OOQOO ooooo 8
° ox, 0® P (%)o P ° 008 9o 906)0030?000 -
© o o0 o ° o ® Q 0 Q% 8 [
S0 e &2 &£ 8o o 80 o 0 00
© ooo%oo oo @og o 0 ©° o 008 °°o% o — R —
> | ° o B —
° o, ©08L 0&%0 P @ 0® <>°°Q>o§ooo e %0 —
s 0° © O% ° 098 %0 87006 ° % 1 —
P 0,9, o °&° ¥ ) & q o 00® o || |
® osd © L 00830L®W DVoy w0 @ Q . .
o | Oo%bo‘p@o& @~ ° f ° 8%@) @0 o%%oo% — — [
o © o o oé?o 000 q
008 o & oo o o°® o} % o & 0° o
P o9 o ®o o o, %8
o@ 0 00go0 of® o o oo © 0 o
8° %8¢ o0Q, % & ® L0 © 9900000 &
) o o
g_ B % d?)oo%)o OOO X o@ f:go ooo8 &oo og oo©°
o o° @ @00%80&0020@900 °
ey O%Q?o %&6 (Doo @% Do . S S
®0 o o ooy §°,°°° o@o 90 op
00 o %Ooo o & ©° 2 o o
q;@p & Q)@ oé’&»
N @0 000§O ) o° ° )
° 00° o Q) D g ®o & o o o o 8 S H
do 0B w0 O g@%o % o -
o Om)%ood)oOoo Ooo °o@ Oo@o % P00
ooso G0 8.0a® S0 ° °° 0%
o | ?%°%® o% %0 0008, o e, 00000@ °60 8 | o J
o
T T T T T [ T T T T 1
0 200 400 600 800 0.0 0.2 0.4 0.6 0.8 1.0
(@) (b)

Figure 22: PIT values for the volatility model with Gaussian observation in Example 3 (panel (a)) and corre-
sponding histogram (panel (b)).
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A Reference manual for the inla program

A.1 Structure of the ini file

The ini file describes the model and sets some additional parameters to be passed to the GMRFLib library. It is divided
in several sections. Each section starts with a tag written between squared brackets ([fag J) which is simply a user defined
name for the section itself.

Each section contains the field fype which determines the role of the section in the problem definition and also the
structure of the section itself. The six different types of section are described in details below.

A.1.1 The type=problem section
This sections specifies some global parameters which are valid for the whole problem. It consists of the following fields:

dir: A string indicating the name of the directory where the results are stored. The directory is created when the inla
program is run. The directory name can include $d

hyperparameters: A Boolean variable indicating whether or not to compute the marginals for the hyperparameters 6
of the model.
Default = 0

summary: A Boolean variable indicating whether or not to output a short summary of the posterior density for all the
nodes in the GMRF «. Currently the summary contains the posterior mean and standard deviation.

Default =1

density : A Boolean variable indicating whether or not to output the marginal densities for a/l nodes in the latent GMRF
x.
Default = 1

quantiles : A list of maximum 10 quantiles, p(0),p(1), ..., to compute for each posterior marginal. The function
returns, for each posterior marginal, the values 2(0), 2(1), ... such that

Prob(X < z(p)) =p

Default: Empty

cdf: A list of maximum 10 cdf, z(0), z(1), ..., to compute for each posterior marginal. The function returns, for each
posterior marginal, the probabilities Prob(X < x(p)).

Default: Empty
smtp: A string indicating which type of solver for sparse matrices should be used. The available choices are:
o GMRFLib_SMTP_BAND Lapack’s band-solver. This is optimal for band matrices
e GMRFLib_SMTP_TAUCS The solver in the TAUCS-library. This is generic for all kind of sparse matrices.
Default: GMRFLib_SMTP_TAUCS

dic: A Boolean variable indicating whether or not to compute the deviance information criterion (DIC) for the model.
Default: 0

cpo: A Boolean variable indicating whether or not to compute the conditional predictive ordinates for the model
Default: 0

mlik A Boolean variable indicating whether or not to compute the marginal likelihood for the model

NB: this quantity is meaningful ONLY if in all the sections type= ffield present in the ini file model=arl is
chosen.

Default: 0
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A.1.2 The type=data section

This section specifies the model for the likelihood of the data 7 (y;|n;, 61) in equation (1)).

From version 1.403 of inla, it is allowed to have multiple data-sections, so in principle, each observation can have a
different likelihood-type.

The (or each) data-section consists of the following fields:

dir: The name of the sub-directory where the results are stored. Default is to use the section name.
likelihood : A string indicating the name of the required likelihood model. The available choices are listed in Table [3]

prior: Prior distribution for hyperparameter 6, in one-parameter likelihood models:
likelihood =gaussian, stochvolt or weibull.
If likelihood =gaussian then 6; = log A\, and the corresponding prior is a LogGamma(a, b)ﬂ
If likelihood = stochvolt then 6 = 1/ (see Table and the corresponding prior is a 0 mean Gaussian distribution
N(0,1/prec).
If likelihood =weibull then 1 = log(«) and the corresponding prior is a LogGamma(a, b).

initial : Initial value for hyperparameter 6 in one-parameter likelihood models:
likelihood =gaussian, stochvolt or weibull.

Initial value for log A, (if likelihood =gaussian) or for v' (if likelihood = stochvolt).

parameters: Parameters for 7(01) in one-parameter likelihood models:
likelihood =gaussian, stochvolt or weibull.

If likelihood =gaussian or weibull: parameters a and b for the LogGamma prior of the log-precision log A,,.
If likelihood =stochvol _t: parameter prec for the Gaussian prior of the v/’

prior0: Prior distribution for the first hyperparameter 61 in vector 81 = (11, 612) in two-parameter likelihood models:
likelihood =T or stochvolnig .

If likelihood =T then 611 = log A\, and the corresponding prior is a LogGamma(a, b).
If likelihood =stochvolnig then 611 = (3 (see Table [3) and the corresponding prior is a 0 mean Gaussian distri-
bution N(0, 1/prec).

initial0 : Initial value for hyperparameter 6, in two-parameter likelihood models:
likelihood =T or stochvolnig .

Initial value for log A, (if likelihood =T) or for 3 (if likelihood =stochvolnig).

parameters0: Parameters for 7w(611) in two-parameter likelihood models:
likelihood =T or stochvolnig .

If likelihood =T: parameters a and b for the LogGamma prior of the log-precision log \,,.
If likelihood =stochvolnig: parameter prec for the Gaussian prior of the 3.

priorl: Prior distribution for the second hyperparameter 65 in vector 1 = (611, 0:12) in two-parameter likelihood
models:
likelihood =T or stochvolnig .
If likelihood =T then 615 = v’ and the corresponding prior is a 0 mean Gaussian distribution A (0, 1/prec).
If likelihood =stochvolnig then 615 = 1’ and the corresponding prior is a 0 mean Gaussian distribution (0, 1/prec).

initiall : Initial value for hyperparameter 615 in two-parameter likelihood models:
likelihood =T or stochvolnig .

Initial value for v/ (if likelihood =T) or for vy’ (if likelihood =stochvolnig).

2See Appendix for a definition.
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parameters]: Parameters for w(612) in two-parameter likelihood models:
likelihood =T or stochvolnig .

If likelihood =T: parameter prec for the Gaussian prior of /.

If likelihood =stochvolnig: parameter prec for the Gaussian prior of ¢’.

fixed : A Boolean variable indicating whether the hyperparameters of the likelihood model are fixed or random.
Default: 0

filename : The name of the file which contains the data for the model. The format of the file depends on the likelihood

model chosen and is indicated in Table[3]

Model Distribution Link Parameters Input File
name function 0, format
=T
gaussian yi ~ N (i, %) Wi =n; 01 = log \y oW Y
poisson yi ~ Po(E;\;) i = exp(n;) - i By
binomial Yi ~ Bin(ni,pi) i = 7(1_?_);};(?(%)) - TN Yi
T Yi = i + ﬁT T =1 01 = (logAy, ') | i wi y
T ~t,® v =log(v — 2)
stochvol yi ~ N(0,02) o; = exp(n;/2) - iy
stochvol _t yi = o, T o; = exp(n;/2) 0, =1 iy
T ~t, ™ V' =log(v — 2)
stochvolnig yi=0; xT o; = exp(n;/2) 0, =(8,¢) iy
T ~ NIG(8, 1)) Y = log(y — 1)
Ditributions for Survival analysis
NB: ¢; is the indicator for the type of event (1 =failure 0 =censure)
exponential y; ~ Exp(\) i = - ¢ Y
weibull y; ~ Weibull(c, %)(***) logy; = n; 0 = log(a) TG

(*) ¢, is a scaled Student-t distribution, see Appendix for definition
(+*) See Appendix or definition of a NIG distribution.

(+*+) See Appendix

for definition of the Weibull distribution.

Table 3: The most common likelihood models supported in the inla program; Those who are not described
here are the zeroinflated Poisson/Binomial of type 0/1 in Section|7]

A.1.3 The type=predictor section

This section defines the model for the unstructured term 7; in equation (Z). The inla program requires a section of
type=predictor to always be present. It consists of the following fields:
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Hyperparameter Prior distribution ‘ Default param

Log-Precision log \, | LogGamma(a,b)*) | a = 1, b = 0.001
] N(0,1/prec) prec = 0.001

(*)) See Appendix [B|for definition of a LogGamma distribution.

Table 4: Prior distributions for the hyperparameters in the likelihood models

prior: Name of the prior for the log-precision parameter log \,,.
Default: loggamma

parameters: Parameters for the prior for the log-precision \,,.
Default: ¢ = 1.0 and b = 0.001 (for the loggamma prior)

fixed : A Boolean variable indicating whether the precision parameter log A, is fixed or random.
Default: 0.

initial : Starting value for log \,,
n: Length of the latent variable vector 7). Either n, or nrow and ncol are required.
nrow: Number of rows of the latent variable vector 7). Either n, or nrow and ncol are required.
ncol: Number of columns of the latent variable vector 7. Either n, or nrow and ncol are required.

compute: A Boolean variable indicating whether or not the marginals for vector 7 have to be computed.
Default: 0
user. scale: A Boolean variable indicating whether or not the marginals for vector INVERSE.LINK(n) should be

computed, where the link-function is defined in the data-section. For example compute the marginals for exp(7;)
for Poisson data. This option is only used if option compute is 1.

Default: 1

summary:A Boolean variable indicating whether or not to output a short summary of the posterior density for 7.
Default: compute

density : A Boolean variable indicating whether or not to output the marginal densities for 7.
Default: compute

quantiles : A list of maximum 10 quantiles, p(0), p(1), ..., to compute for each node in 7.
Default: Empty

cdf:A list of maximum 10 cdf, z(0), z(1), ..., to compute for each node in 7).
Default: Empty

offset : The name of the file where the values of an possible offset are stored.
In general the data y depends on 7 as given in (IJ), but in some cases there is fixed offset present

yilnj, 01 ~ w(y;|(n; + offset;), 61)

nffl

i = Z Frleri) +2{ B+ e, 1 =0,...my —1 (28)
k=0

and this option gives the opportunity to specify this offset. Let n,, be the length of the linear predictor 1. Then

the offset file contains values for offset; with ¢ = 0, ..., n, — 1 in the following way:
0 -1
1 3.2
2 4.9
10 2
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where the first column specifies the index ¢ and the second column the corresponding offset value. Offset values
for non-specified indices are assumed to be 0. If no offset file is specified the offset is assumed to be 0.

A.1.4 The type= ffield type section

A section of type= ffield specifies the model for one of the function f in equation (2). Hence, in a ini file there must
be n s sections of type= ffield . Each type= ffield section consists of the following fields:

dir: The name of the sub-directory where the results are stored. Default is to use the section name.
model: A a string indicating the name of the chosen model. All available choices are listed in Table 3}

n: The size of the model. If not given, it is implicitly given by the remaining arguments.
Default: undefined

replicate : How many times this model should be replicated. This is an expert option.
Default: 1
prior: Name of the prior for the log-precision parameter log Ay. At the moment only two priors are implemented, the

LogGamma(a, b) and the minuslogsqrtruncnormal(a) prior. (Not in use if model=ar1.) The MinusLogSqrTruncNormal
prior is derived from requiring o to be a positive truncated zero-mean Normal with precision a.

Default: loggamma

parameters: Parameters a and b for the LogGamma prior of the log-precision log Ay, or the parameter a for the
MinusLogSqrTruncNormal prior. (Not in use if model=arl.)
Default: ¢ = 1.0 and b = 0.001 for prior=LogGamma, and @ = 0.001 for prior=MinusLogSqrTruncNormal.

initial : Starting value for log A ¢ (not in use if model=arI)

prior0: Name of the prior for the log-precision parameter A s if model=arl. At the moment only the LogGamma(a, b)
prior is implemented
Default: loggamma

priorl: Name of the prior for the precision parameter « if model=arl. At the moment only the Gaussian(0, prec,)
prior is implemented

Default: gaussian
parametersO:Parameters a and b for the LogGamma prior of the precision log Ay (only for model=arI)
Default: ¢ = 1.0 and b = 0.001
parametersl: Parameter prec, for parameter x (only for model=arl)
Default: prec,, = 0.001
initial0 : Starting value for log A ¢ (only for model=arl)
initiall : Starting value for x (only for model=arl)

rankdef: A number defining the rank deficiency of the model, with sum-to-zero constraint and possible extra-constraints
taken into account.
Default: no default value.

If rankdef is not set, then it is computed by the rankdef of the prior model (for the genericO model, the default
is zero), plus 1 for the sum-to-zero constraint if the prior model is proper, plus the number of extra constraints.
Oops: This can be wrong, and then the user must define the rankdef explicitly.

fixed : A Boolean variable indicating whether the precision parameter Ay is fixed or random.
Default: 0.

fixed0: A Boolean variable indicating whether the precision parameter Ay is fixed or random (only for model=arl).
Default: 0.

fixedl : A Boolean variable indicating whether the parameter « is fixed or random (only for model=arl).
Default: 0.
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constraint : A Boolean variable indicating whether or not to impose a sum-to-zero constraint ) f; = 0
Default: 0.

extraconstraint : A filename containing extra constraints Af = e.
Default: no default value.

Let nc be the number of constraints and n the length of f. The file must then contain nc x n + nc numbers in the

fOllOWiI’lg order: A171, A1727 N aAl,n» 142717 ce ,Ag)n, c ey Anc,la ey Anc,n: €1,-..,€Enc-

diagonal: Additional constraint to add on the diagonal
Default: 0.

graph: The name of the file where the graph is stored (only if model=besag)
weights: The name of the file where the weights wy; are stored.
n: Length m of vector f. Only if model=rwl,rw2,crw2 and no locations is specified.

locations : The name of the file where the value of the covariate are stored, only if model=rwli,rw2 or crw2. If no file
is specified the covariate are assumed to take values in {0,1,...,m — 1}.

cyclic: A Boolean variable specifying whether the model is cyclical, only if model=rwi,rw2 and no locations is
specified.

compute: A Boolean variable indicating whether or not the marginals for vector f have to be computed.
Default: 1

summary:A Boolean variable indicating whether or not to output a short summary of the posterior density for f.
Default: compute

density : A Boolean variable indicating whether or not to output the marginal densities for f.
Default: compute

quantiles : A list of maximum 10 quantiles, p(0), p(1), ..., to compute for each node in f.
Default: Empty

cdf A list of maximum 10 cdf, z(0), z(1), ..., to compute for each node in f.
Default: Empty

A.1.5 The type=linear section

A section of type=linear specifies the model for one of the element 3 of vector 3 = (0o, ..., n,—1) in equation .
Hence a ini file will contain ng sections of type=linear. Each section consists of the following fields:

dir: The name of the sub-directory where the results are stored. Default is to use the section name.
covariates : Name of the file where covariate are stored. If empty, then all covariates are assumed to be 1.

mean: Fixed mean for the Gaussian prior distribution of 3.
Default: 0

precision : Fixed precision for the Gaussian prior distribution of /.
Default: 0.001

compute: A Boolean variable indicating whether or not the marginal for 55 has to be computed.
Default: 1

summary:A Boolean variable indicating whether or not to output a short summary of the posterior density for 5.
Default: compute

density : A Boolean variable indicating whether or not to output the marginal densities for 5.
Default: compute

quantiles : A list of maximum 10 quantiles, p(0), p(1), ..., to compute for each node in S
Default: Empty

cdf A list of maximum 10 cdf, z(0), (1), ..., to compute for each node in Gy
Default: Empty
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A.1.6 The type=INLA section

This section is optional, it specifies parameters to be passed to the GMRFLib library. It is possible to specify here all pa-
rameters in the GMRFLib_ai_param_tp structure. We describe here the most used and useful ones, for more details see the
on-line documentation for the GMRFLib library: http://www.math.ntnu.no/~hrue/GMRFLib/doc/html/

strategy : The strategy used to compute approximations to the posterior marginals 7 (xz;|y, 8). The three main choice
are:

o GMRFLib_AI_STRATEGY_GAUSSIAN: computes the Gaussian approximation

o GMRFLib_ AI STRATEGY_ MEANSKEWCORRECTED_GAUSSIAN: computes the simplified Laplace ap-
proximation.

o GMRFLib_ Al STRATEGY_FIT_SCGAUSSIAN: Computes the full Laplace approximation fitting a spline-
corrected Gaussian.

The three approximation types are described in|Rue et al.| (2007).
Default: GMRFLib_AI_STRATEGY MEANSKEWCORRECTED_GAUSSIAN

int _ strategy : The strategy used to integrate out the hyperparameters @ when computing 7(x;|y). There are two
possible choices:
o GMRFLib_ AI INT_STRATEGY_GRID (or grid) : Use a grid strategy, slower and somehow more accurate.
o GMRFLib_ AI INT_STRATEGY_CCD (or ccd) : Use a central composite design strategy, faster and espe-
cially useful for problems with higher dimension of the hyperparameter vector 6.

Both strategies are described in Rue et al.| (2007)).
Default: GMRFLib_AI_ INT_STRATEGY_CCD

dz : Step length for the integration procedure, only if int _ strategy =grid.
Default: 1

diff _logdens : Only used if int _ strategy = grid. Threshold for accepting a configuration.
Default: 2.5

skip _ configurations : Only used if int _ strategy = grid. Skip fill-in configuration larger than a non-accepted one.
Default: GMRFLib_TRUE

gradient _ finite _ difference _step _len (or h): Step length to compute the gradient of 7(6).
Default: 1.0e-4

hessian _ finite _ difference _step _len (or h): Step length to compute the Hessian of 7(0|y) at the mode.
Default: 1.0e-2

interpolator Type of interpolator used to compute marginals for each hyperparameter 7 (6,,|y), the available choices
are:

o GMRFLib_ AI_LINTERPOLATOR_AUTO: Chose interpolation type based on the integration strategy.
If int _ strategy =grid, then choose GMRFLib_AI_ INTERPOLATOR _WEIGHTED _DISTANCE. If int _ strategy =ccd,
then the choice is GMRFLib_AI_INTERPOLATOR_CCD

o GMRFLib_ AI INTERPOLATOR_LINEAR: Linear interpolation using the (M + 1) nearest points, where M
is the dimension of the hyperparameters space.

e GMRFLib_AI INTERPOLATOR _QUADRATIC: Quadratic interpolation using the (M + 1) nearest points.
o GMRFLib_ AI_INTERPOLATOR _WEIGHTED _DISTANCE: Linear interpolation using weighted distance.
o GMRFLib_ AI INTERPOLATOR_CCD: Special interpolation for the CCD integration scheme.

The interpolations are described in|Martino| (2007)).
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A.2 Format of the input files

There are five type of input files which can be read from the inla program: the data file, the covariate file, the covariate
locations type, the graph file and the Q-matrix file, each with its own format required. The formats have been already
presented in different examples but are all collected here.

Data file The format of the data file depends on the likelihood model chosen and on whether the data are collected on a
grid or not. The format of the data file is displayed in Table[3]

Covariate and location file Each covariate has to be stored in a separate file. The format of the file depends on whether
the covariate is assumed to have linear or non-linear effect:

Covariates with linear effect: The value of the covariate is simply stored in a file with n,, columns each row
having the format:
) Zi
where i = 0,...,n, — 1 and z; is the value of the covariate for node 1.

Covariates with non-linear effect: Letc € C and C = {¢(¥) < ¢ < ... < clMd®) < ... < (M=} Thatis,
covariate c takes one of the m values in the ordered vector C'. The file storing covariate ¢ has n,, row, each
with the following format:

where i = 0,...,n, — 1 and (idx); is the position of the observed value ¢; in the vector C' If the values in
C are different from 0, 1, . . . then another file (the locations file) of m rows, is necessary to store the values

of C. A short example will be useful:

Example: Let n,, = 5 and C = {9,10,11}. Moreover assume that the observed covariate values are
co=10,c1 =9, cog =11, c3 = 9 and c4 = 10. Then the covariate file will be as following

0

W N =
= o N O =

We would need also a file storing the values in C':

9
10
11

NOTE: If the covariate value ¢(*) is not within the indices of the non-linear effect, for example negative,
then this covariate is not included in the predictor for the specific ;.

Graph file The graph file contains information on the neighbourhood structure of the spatial effect We describe the
required format for such a file using a small example. Let the file graph. dat, relative to a small graph, be

1 5

2 011

3 1202
4 23134
5 312

6 4 1 2

Line 1 declares the total number of nodes in the graph, then, in lines 2-6 each node is described. For example,
line 4 states that node 2 has 3 neighbours and these are nodes 1, 3 and 4. This is the same format used in the

GMRFLib library.

Q-matrix This entry is only needed if the field model in a ffield -type section is defined as genericO. The entry specify
a filename which should contain all non-zero entries of the user specified precision matrix @ in the following
format

i J Qi

where ¢ and j are the row and column index and @, is the corresponding entry in the precision matrix.
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A.3 Some possible problems and solutions
1. The inla function checks that all entries in the ini file are used while building the models, so an error message
like
inla _build: [ZAMBIA.ini] contain[1] unused entries. PLEASE CHECK
probably means that some of the fields in the ini file have been misspelled.

2. In our experience the most common problems with the inla function comes from the optimisation procedure
and the numerical computation of the Hessian of log 77(0|y) at the modal configuration.

The optimiser might not converge, thus producing an error message like:

GMRFLib version 3.0—0—snapshot, has received error no [12]

Reason : The Newton—Reason optimiser did not converge

Function : GMRFLib_optimize _store

File : optimize.c

Line 1 460

RCSId : $Id: tutorial _inla.tex,v 1.69 2009/08/08 09:38:28 hrue Exp $

Usually restarting the inla function assigning different starting values for the hyperparameters vector 6 (field
initial ), will solve the problem.

3. Another error which might happen is that the computed numerical Hessian for log 7(0|y) in not positive definite.
This produces the following error message:

GMRFLib version 3.0—0—snapshot, has received error no [2]
Reason : Matrix is not positive definite
Message : Condition ‘gsl_vector_get(eigen_values, (unsigned int) i) >
0.0’ is not TRUE
Function : GMRFLib_ai _INLA

File : approx—inference.c
Line : 2689
RCSId : $Id: tutorial _inla.tex,v 1.69 2009/08/08 09:38:28 hrue Exp $

To solve this problem it is usually enough to increase the step length used to numerically compute the Hessian
and the gradient. These quantities can be re-defined in the fype=INLA section by using the parameter /2 which set
gradient _ finite _ difference _step _len= h and hessian _ finite _ difference _step _len= ﬂh) Otherwise, set
the two parameters gradient _ finite _ difference _step _len and hessian _ finite _ difference _step _len.
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B Some Distribution Functions

B.1 Log Gamma distribution

A random variable X has a LogGamma distribution with parameters a and b (LogGamma(a,b))) if Y = exp(X) has a
Gamma distribution with mean a /b and variance a/b%.

B.2 Scaled Student-¢ distribution

A scaled Student-¢ distribution is a Student-¢ distribution with v degrees of freedom scaled so that its mean is 0 and its
variance is 1 for any value of the parameter v.

B.3 NIG distribution

A random variable X is said to have a standardised normal inverse Gaussian distribution NI1G(3, ) with hyperparam-
eters 0, = (8, psi) if its density is given by

60 = 22\ [ P o (02 4 86+ 9) K (VT ) (O 4 92 1 09))

where 72 = 1 + (32/4)2. The above density has zero mean and unit variance. The parameter 3 controls (essentially)

the skewness of the density, while the parameter v is (essentially) a shape parameter. This density is used in financial
applications.

B.4 Weibull distribution

A random variable Y has a Weibull distribution with parameters « and ~y if its density function is given by
fly;a,7) = ay®texp{logy — vy}
The survival function is then:

Yy
S(yany) =1 /0 Flus ) du = exp(—y 4°)

and hazard rate function:
hy; o, \) = ay® 'y
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Model Model
Type Name Parameters Reference
Independent
random noise iid log-precision log A ¢
Random Walk
of order 1 wl log-precision log Ay | (Rue and Held, 2005, Ch. 3.3.1)
Random Walk
of order 2 w2 log-precision log Ay | (Rue and Held, 2005, Ch. 3.4.1)
First order
Intrinsic GMRF besag log-precision log Ay | (Rue and Held, 2005, Ch. 3.3.2)
on a irregular lattice
Continuous
random walk crw?2 log-precision log Ay | (Rue and Held, 2005, Ch. 3.5)
Autoregressive
of order 1 arl log-precision log Ay | (Rue and Held, 2005, Ch. 1.1)
Ty = Qur—1 + € K= logit%
User defined
precision matrix generic0 log-precision log A s (see Example @)
Bivariate 2diid log-precision log A\, (see Example l
correlated noise log-precision log A,
correlation p*
Bivariate 2 diidwishart log-precision log A\, (see Example
correlated noise log-precision log A,
correlation p*
Bivariate 2 diidwishartpart0 | log-precision log A, (see Example l
correlated noise log-precision log A,
correlation p*
Bivariate 2 diidwishartpartl | log-precision log A, (see Example b

correlated noise

Table 5: The most common models for the #ype= ffield section implemented in the inla program; The one

log-precision log A,
correlation p*

not mention here is the 3diid-Wishart model described in Section[3.4.3]

Hyperparameter

‘ Prior distribution ‘ Default param

 (only for AR1)

Log-Precision log Ay | LogGamma(a, b)

N(0,1/precy,)

prec;,, = 0.001

Table 6: Prior distributions for the hyperparameters
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