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Abstract

This manual describes the inla program, a new instrument which allows the user to easily perform

approximate Bayesian inference using integrated nested Laplace approximation (INLA). We describe the

set of models which can be solved by the inla program and provide a series of worked out examples

illustrating its usage in details. Appendix A contains a reference manual for the inla program.

This manual is for version snapshot of the inla program.
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1 Introduction

Integrated nested Laplace approximation (INLA) is a new approach to statistical inference for latent Gaussian

Markov random field (GMRF) models introduced by Rue and Martino (2006) and Rue et al. (2007). It provides

a fast, deterministic alternative to Markov chain Monte Carlo (MCMC) which, at the moment, is the standard

tool for inference in such models. The main advantage of the INLA approach over MCMC is that it is much

faster to compute; it gives answers in minutes and seconds where MCMC requires hours and days. The theory

behind INLA is thoroughly described in Rue et al. (2007) and will not be repeated here.

In short, a latent GMRF model is a hierarchical model where, at the first stage we find a distributional assump-

tion for the observables y usually assumed to be conditionally independent given some latent parameters η

and, possibly, some additional parameters θ1

π(y|η,θ1) =
∏

j

π(yj |ηj ,θ1).

The latent parameters η are part of a larger latent random field x, which constitutes the second stage of our

hierarchical model. The latent field x is modelled as a GMRF with precision matrix Q depending on some

hyperparameters θ2

π(x|θ2) ∝ exp{−1

2
(x − µ)T Q(x − µ)}

The third, and last, stage of the model consists of the prior distribution for the hyperparameters θ = (θ1,θ2).

The INLA approach provides a recipe for fast Bayesian inference using accurate approximations to π(θ|y)
and π(xi|y), i = 0, . . . , n − 1, i.e. the marginal posterior density for the hyperparameters and the posterior

marginal densities for the latent variables. Different types of approximations are available, see Rue et al.

(2007) for details. The approximate posterior marginals can then be used to compute summary statistics of

interest, such as posterior means, variances or quantiles.

Using the INLA approach it is also possible to challenge the model itself. The model can be assessed through

cross-validation in a reasonable time. Moreover, Bayes factors and deviance information criterion (DIC) can

be computed in an efficient way providing tools for model comparison.

Computational speed is one of the most important components of the INLA approach, therefore special care

has to be put in the implementation of the required algorithms. All procedures necessary to perform INLA are

efficiently implemented in the GMRFLib library. This an open source library written in (ANSI) C and Fortran

which is freely available on the web page http://www.math.ntnu.no/∼hrue/GMRFLib/.

The inla program is a useful tool which allows the user to easily specify and solve a large class of models,

using the algorithms in the GMRFLib library, without any need for C programming. The components of the

model and the options for the INLA procedures are specified through a ini file. The inla program reads the

ini file, then it builds and solves the model returning the required approximate posterior marginal densities

and summary statistics.

The class of models which can be solved using the inla program is wide, covering time series models,

generalised additive models (Hastie and Tibshirani, 1990), generalised additive mixed models (Lin and Zhang,

1999), geoadditive models (Kammand and Wand, 2003), univariate volatility models (Taylor, 1986). With the

exception of univariate volatility models, the inla program supports a subset of the models supported by

BayesX. BayesX is a software tool, developed in the University of Munich, for estimating structured additive

regression models, Brezger et al. (2003).

An R package called INLA is also under construction. This works as an interface to the inla program and

its usage is similar to all other R functions.

In this tutorial we present the inla program (and its R interface) and, through a series of worked out examples

show the possible range of applications where approximate Bayesian inference using INLA can be useful. In
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Section 2 we discuss the class of models which can be defined and solved using the inla program. In

Section 3 we describe the use of the inla program through a series of worked out examples of increasing

complexity. The examples include all, but one, examples in Rue and Held (2005) and all examples in Rue

et al. (2007), plus some more examples previously analysed with BayesX. For most of the example also the

implementation via the R package INLA is reported. Section 9 describes how to perform model assessment

and model comparison. Appendix A consists of a reference manual for the inla program while appendix B

describes some of the implemented probability density.

2 Model description

The inla program supports hierarchical GMRF models of the following type

yj |ηj ,θ1 ∼ π(yj |ηj ,θ1) j ∈ J (1)

ηi = Offseti +

nf−1∑

k=0

wki fk(cki) + zT
i β + εi i = 0, . . . , nη − 1 (2)

where

• J is a subset of {0, 1, . . . , nη − 1}, that is, not necessarily all latent parameters η are observed through

the data y.

• π(yj |ηj ,θ1) is the likelihood of the observed data assumed to be conditional independent given the

latent parameters η, and, possibly, some additional parameters θ1. The latent variable ηi enters the

likelihood through a known link function, see Appendix A.1 for details.

• ε is a vector of unstructured random effects of length nη with i.i.d Gaussian priors with precision λη:

ε|λη ∼ N (0, ληI) (3)

• η = (η1, η2, . . . ) is a vector of predictors.

• Offset this is an a priori known component to be included in the linear predictor during fitting.

• wk known weights defined for each observed data point.

• fk(cki) is the effect of a generic covariate k which assumes value cki for observation i. The func-

tions fk, k = 0, . . . , nf − 1 comprise usual nonlinear effect of continuous covariates, time trends

and seasonal effects, two dimensional surfaces, iid random intercepts and slopes and spatial random

effects. The unknown functions, or more exactly the corresponding vector of function evaluations

fk = (f0k, . . . , f(mk−1)k)
T , are modelled as GMRFs given some parameters θfk

, that is

fk|θfk
∼ N (0,Q−1

k ) (4)

• zi is a vector of nβ covariates assumed to have a linear effect, and is β the corresponding vector of

unknown parameters with independent zero-mean Gaussian prior with fixed precisions.

The full latent field, of dimension n = nη +
∑nf−1

j=0 mj + nβ , is then

x = (ηT ,fT
0 , . . . ,f

T
nf−1,β

T ).

Note that in the inla program the latent field x is parametrised using the predictors η instead of the unstruc-

tured terms ε.
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All elements of vector x are defined as GMRFs, hence x is itself a GMRF with density:

π(x|θ2) =

nη−1∏

i=0

π(ηi|f0, . . . ,fnf−1,β, λη)

nf−1∏

k=0

π(fk|κfk
)

nβ−1∏

m=0

π(βm) (5)

where

ηi|f0, . . . ,fnf−1,β ∼ N (

nf−1∑

k=0

fk(cki) + zT
i β, λη) (6)

and θ2 = {log λη,θf0
, . . . ,θnf−1} is a vector of unknown hyperparameters. Note that we include the loga-

rithm of the precision parameters in the vector of hyperparameters.

The last element in the definition of our hierarchical model is a prior distribution for the hyperparameters

θ = (θ1,θ2). In the inla function all precisions are given a Gamma prior with parameters a and b so that

the mean is a/b and the variance is a/b2. See the Appendix for details about the prior distributions for all the

hyperparameters of the model.

Many well known models from the literature can be written as special cases of (1) and (2)

• Time series models

Time series models are obtained if ck = t represents time. The functions fk can model nonlinear trends

or seasonal effects

ηt = ftrend(t) + fseasonal(t) + zT
t β

• Generalised additive models (GAM)

A GAM model is obtained if π(yi|ηi,θl) belongs to an exponential family, ck are univariate, continuous

covariates and fk are smooth functions.

• Generalised additive mixed models (GAMM) for longitudinal data

Consider longitudinal data for individuals i = 0, . . . , ni − 1, observed at time points t0, t1, . . . . A

GAMM model extends a GAM by introducing individual specific random effects, i.e.

ηit = f0(cit0) + . . . ,+fnf−1(cit(nf−1))) + b0iwit0 + · · · + b(nb−1)iwit(nb−1)

where ηit is the predictor for individual i at time t, xitk, k = 0, . . . , nf − 1,witq, q = 0, . . . , nb − 1
are covariate values for individual i at time t, and b0i, . . . , b(nb−1)i is a vector of nb individual spe-

cific random intercepts (if witq = 1) or slopes. The above model can be written in the general form

in equation (2) by defining r = (i, t), crj = citj for j = 0, . . . , nf − 1 and cr,(nf−1)+q = witq,

f(nf−1)+q(cr,(nf−1)+q) = bqiwitq for q = 0, . . . , nb. In the same way GAMM’s for cluster data can be

written in the general form (2).

• Geoadditive models

If geographical information for the observations in the data set are available, they might be included in

the model as

ηi = f1(c0i) + · · · + fnf−1(c(nf−1)i) + fspat(si) + zT
i β

where si indicates the location of observation i and fspat is a spatially correlated effect. Models where

one of the covariate represent the spatial effect have recently been coined geoadditive by Kammann and

Wand (2003).

• ANOVA type interaction model

The effect of two continuous covariate w and v can be modelled as

ηi = f1(wi) + f2(vi) + f1|2(wi, vi) + . . .
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where f1 and f2 are the main effects of the two covariates and f1|2 is a two dimensional interaction

surface. The above model can be written in the general form (2) simply by defining c1i = wi, c2i = vi,

c3i = (wi, vi),

• Univariate stochastic volatility model

Stochastic volatility models are time series models with Gaussian likelihood where it is the variance,

and not the mean of the observed data, to be part of the latent GMRF model. That is

yi|ηi ∼ N (0, exp(ηi))

The latent field is then typically modelled as a autoregressive model of order 1.

3 Examples of application

In this section we present a series of worked out examples mostly taken from Rue and Held (2005), Rue et al.

(2007) and from the BayesX web page. The aim is both to show the wide range of models which can be solved

using the approximate Bayesian inference techniques presented in Rue et al. (2007), and to introduce the inla

program which makes it possible for the user to apply the above mentioned approximation techniques, making

use of the GMRFLib library, in an easy and painless way.

The only input required from the inla program is a ini file containing the description of the model, the

location of the files where the data and the covariates are stored, and, possibly, some options to be passed

to the underlying GMRFLib library. The ini file is organised in sections each of which either describes

one element of the hierarchical model in equations (1) and (2), or specifies some global parameters for the

underlying functions in the GMRFLib library. The user is required to specify the likelihood model for the

data, the parameters for the prior distribution of the model hyperparameters θ, and to describe, one by one,

all components of the latent GMRF x in (2). The inla program will then read the model specifications,

build the joint probability distribution for the latent GMRF x in equation (5), compute approximations for the

required posterior marginals and store the results in a user defined directory.

Before presenting the examples, we describe how the covariate values are stored in files. Each covariate has to

be stored in a separate file. The format of the file depends on whether the covariate is assumed to have linear

or non-linear effect:

Covariates with linear effect: The value of the covariate is simply stored in a file with nη columns each row

having the format:

i zi

where i = 0, . . . , nη − 1 and zi is the value of the covariate for observation i.

Covariates with non-linear effect: Let c ∈ C and C = {c(0) < c(1) < · · · < c(idx) < · · · < c(m−1)}. That

is, covariate c takes one of the m values in the ordered vector C. The file storing covariate c has nη

row, each with the following format:

i (idx)i

where i = 0, . . . , nη −1 and (idx)i is the position of the observed value ci in the vector C. If the values

in C are different from 0, 1, . . . , another file of m rows, is necessary to store the values of C. A short

example will be useful:

Example: Let nη = 5 and C = {9, 10, 11}. Let the observed covariate values be c0 = 10, c1 = 9,
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c2 = 11, c3 = 9 and c4 = 10. Then the covariate file will be as following

0 1
1 0
2 2
3 0
4 1

We would need also a file storing the values in C:

9
10
11

Note that all indexes go from 0 to n− 1 and not from 1 to n.

We run each example in Section 3.1 on two different machines. The first, defined Machine 1, is a laptop with

a Intel(R) Pentium(R) M processor 1.86GHz. The second one, defined Machine 2 is a Dell Poweredge 2950

equipped with two quad-core Itel Xeon 2.66GHz CPUs. For each of the examples we describe the model, the

corresponding ini file and report some output results and the computation time for each of the two machines.

3.1 A simple time series: the Tokyo rainfall data

Our first example is a simple time series model, analysed, among others, in Rue and Held (2005, Sec. 4.3.4).

Example 1 The number of occurrences of rainfall over 1 mm in the Tokyo area for each calendar year during

two years (1983-84) are registered. It is of interest to estimate the underlying probability pt of rainfall for

calendar day t which is, apriori, assumed to change gradually over time. The likelihood model is binomial

yt|ηt ∼ Bin(nt, pt)

with logit link function

pt =
exp(ηt)

1 + exp(ηt)
.

The model for the latent variables can be written in the general form of equation (2) as

ηt = f(t)

where t is the observed time whose effect is modelled as a smooth function f(·). Following Rue and Held

(2005), the random vector f = {f0, . . . , f365} is assumed to have a circular random walk of order 2 (RW2)

prior with unknown precision λf .

There is only one hyperparameter θ = (log λf ) which we assign a LogGamma(a, b) prior distribution with

a = 1 and b = 0.0001. The LogGamma distribution is defined such that if X ∼ LogGamma(a, b), the

Y = exp(X) ∼ Gamma(a, b) with E(Y ) = a/b and Var(Y ) = a/b2.

Figure 1, panel (a), displays the observed frequencies of rain for the 366 time points. The TOKYO.ini file

which defines the above model for the inla program is:

1 [ The Tokyo−r a i n f a l l example ]

2 t y p e = problem

3 d i r = r e s u l t s

4

5 [ P r e d i c t o r −t e rm ]
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6 t y p e = p r e d i c t o r

7 i n i t i a l = 10

8 f i x e d = 1

9 n = 366

10

11 [ da ta ]

12 t y p e = da ta

13 l i k e l i h o o d = b i n o m i a l

14 f i l e n a m e = t o k y o . r a i n f a l l . da ta

15

16 [ l a t e n t −RW2]

17 t y p e = f f i e l d

18 c o v a r i a t e s = t i m e . c o v a r i a t e

19 n=366

20 model = rw2

21 p a r a m e t e r s = 1 . 0 0 .0001

22 c y c l i c = 1

23 q u a n t i l e s =0.025 0 .975

In the following we guide the reader, section by section, through the above ini file and explain what the

different fields represent. We then briefly illustrate how to run the inla program and how and where the

output is stored.

Each section of the ini file starts with a tag (in square brackets) which is simply a user defined name for the

section itself. The order of the sections is not important. The field named type is contained in each section. It

defines the role of the section in the problem specification and, consequently, determines also the nature of all

other fields in the same section. There are six specifications for the type field, see Appendix A.1 for details.

The first section in our ini file, defined by type=problem, specifies some global parameters. The options

specified in this section are valid for the whole problem. Here, the directory where the results will be stored

is defined (line 3).

The second section, defined by type=predictor, (lines 5-9), deals with vector η in (6). The field n is re-

quired and indicates the length nη of the latent variable vector η. The inla program requires a sec-

tion of type=predictor to always be present, even in cases, like the example we are presenting here, where

there is no unstructured random effect u and therefore the predictor vector is a deterministic function of

f0, . . . ,fnf−1,β. We mimic the absence of unstructured random effect by declaring the precision λη to be

fixed and not random (fixed =1), and the value of the log precision log λη to be high ( initial =10).

The following section, defined by type=data (lines 11-14), specifies the model for the likelihood of the data

π(yt|ηt) (line 13), and the name of the file where the data are stored (line 14). The format of the data file

depends on the likelihood model, see Appendix A.1.2. For binomial likelihood it is as following:

t nt yt

where t is the data index going from 0 to (nd − 1) = 365.

The last section, defined by type= ffield (lines 16-23) specifies the model for the random vector f . In this

example we have a second order random walk (model=rw2) of length 366 (n=366) which is cyclical ( cyclic =1).

We also specify here the parameters a and b for the LogGamma prior for the log precision parameter log λf

(line 21). We require the inla program to compute also the 0.025 and 0.975 quantiles for each of the posterior

marginal densities in the latent RW2 field (line 23). The name of the file where the covariate values are stored

(line 18) completes the model specification. In this case the covariate is just the observed time point. The
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covariate file consists of two identical columns with index going from 0 to 365.

0 0
1 1
2 2

Once the ini file is ready, we can run the program using the following command line:

The option -v (verbose) makes the program print out some more information about the model while running.

Only for this example, we reproduce the output of the inla program to make the reader familiar with it.

P r o c e s s i n g f i l e [TOKYO. i n i ]

i n l a b u i l d . . .

number o f s e c t i o n s = [ 5 ]

p a r s e s e c t i o n = [ 0 ] name =[ t h e tokyo− r a i n f a l l example ] t y p e =[PROBLEM]

i n l a p a r s e p r o b l e m . . .

name =[ t h e tokyo− r a i n f a l l example ]

use . d e r i v a t i e s = [ 1 ]

dof . max = [ 5 0 ]

s t o r e r e s u l t s i n d i r e c t o r y =[ r e s u l t s 0 ]

o u t p u t :

cpo = [ 0 ]

d i c = [ 0 ]

k l d = [ 1 ]

ml ik = [ 0 ]

h y p e r p a r a m e t e r s = [ 0 ]

summary = [ 1 ]

d e n s i t y = [ 1 ]

n q u a n t i l e s = [ 0 ] [ ]

ncd f = [ 0 ] [ ]

p a r s e s e c t i o n = [ 1 ] name =[ p r e d i c t o r −t e rm ] t y p e =[PREDICTOR]

i n l a p a r s e p r e d i c t o r . . .

s e c t i o n =[ p r e d i c t o r −t e rm ]

PRIOR−>name =[LOGGAMMA]

PRIOR−>PARAMETERS= [ 1 , 0 . 0 0 1 ]

i n i t i a l i s e l o g p r e c i s i o n [ 1 0 ]

f i x e d = [ 1 ]

n =[366 ]

compute = [ 0 ]

o u t p u t :

summary = [ 1 ]

d e n s i t y = [ 1 ]

n q u a n t i l e s = [ 0 ] [ ]

ncd f = [ 0 ] [ ]

p a r s e s e c t i o n = [ 2 ] name =[ d a t a ] t y p e =[DATA]

i n l a p a r s e d a t a . . .

t a g =[ d a t a ]

l i k e l i h o o d =[BINOMIAL]

f i l e −>name =[ tokyo . r a i n f a l l . d a t a ]

r e a d n =[1098] e n t r i e s from f i l e =[ tokyo . r a i n f a l l . d a t a ]

0 /366 ( idx , a , y ) = ( 0 , 2 , 0 )

1 /366 ( idx , a , y ) = ( 1 , 2 , 0 )

2 /366 ( idx , a , y ) = ( 2 , 2 , 1 )

p a r s e s e c t i o n = [ 3 ] name =[ l a t e n t −rw2 ] t y p e =[ FFIELD ]

i n l a p a r s e f f i e l d . . .

s e c t i o n =[ l a t e n t −rw2 ]

model =[ rw2 ]

PRIOR−>name =[LOGGAMMA]

PRIOR−>PARAMETERS= [ 1 , 0 . 0 0 0 2 8 9 ]

c o n s t r = [ 0 ]

d i a g o n a l = [ 0 ]

compute = [ 1 ]

f i x e d = [ 0 ]
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r e a d c o v a r i a t e s from f i l e =[ t ime . c o v a r i a t e ]

r e a d n =[732 ] e n t r i e s from f i l e =[ t ime . c o v a r i a t e ]

f i l e =[ t ime . c o v a r i a t e ] 0 /366 ( idx , y ) = ( 0 , 0 )

f i l e =[ t ime . c o v a r i a t e ] 1 /366 ( idx , y ) = ( 1 , 1 )

n = [ 3 6 6 ] : use d e f a u l t l o c a t i o n s , i f r e q u i r e d

c y c l i c = [ 1 ]

i n i t i a l i s e l o g p r e c i s i o n [ 1 ]

o u t p u t :

summary = [ 1 ]

d e n s i t y = [ 1 ]

n q u a n t i l e s = [ 2 ] [ 0 . 025 0 . 975 ]

ncd f = [ 0 ] [ ]

p a r s e s e c t i o n = [ 4 ] name =[ i n l a ] t y p e =[INLA ]

i n l a p a r s e I N L A . . .

s e c t i o n [ i n l a ]

C o n t e n t s o f a i p a r a m 0 x9aa3428

S t r a t e g y : Use a mean−skew c o r r e c t e d G a u s s i a n by f i t t i n g a Skew−Normal

F a s t mode : On

Use l i n e a r a p p r o x i m a t i o n t o l o g ( |Q +c | ) ? No

P a r a m e t e r s f o r improved a p p r o x i m a t i o n s

Number o f p o i n t s e v a l u a t e : 9

S t ep l e n g t h t o compute d e r i v a t i v e s n u m e r i c a l l y : 0 .000018

C u t o f f v a l u e t o c o n s t r u c t l o c a l n e i g b o r h o o d : 0 .001000

L i m i t t o a c c e p t a G a u s s i a n f i t : 0 .010000

L i m i t t o a c c e p t a Skew−Normal f i t : 0 .010000

Log c a l c u l a t i o n s : On

Log c a l c u l a t e d m a r g i n a l f o r t h e h y p e r p a r a m e t e r s : Off

I n t e g r a t i o n s t r a t e g y : Use a d a p t i v e g r i d−a p p r o a c h ( GRID)

f0 (CCD on ly ) : 1 .100000

dz ( GRID on ly ) : 1 .000000

A d j u s t w e i g h t s ( GRID on ly ) : On

D i f f e r e n c e i n log−d e n s i t y l i m i t (GRID on ly ) : 2 .500000

Skip c o n f i g u r a t i o n s wi th ( presumed ) s m a l l d e n s i t y (GRID on ly ) : On

G r a d i e n t i s computed u s i n g Forward d i f f e r e n c e wi th s t e p−l e n g t h 0 .001000

H e s s i a n i s computed u s i n g C e n t r a l d i f f e r e n c e wi th s t e p−l e n g t h 0 .001000

H e s s i a n m a t r i x i s f o r c e d t o be a d i a g o n a l m a t r i x ? [ No ]

Compute e f f e c t i v e number o f p a r a m e t e r s ? [ Yes ]

Per fo rm a Monte C a r l o e r r o r − t e s t ? [ No ]

I n t e r p o l a t o r [ Auto ]

i n l a b u i l d : check f o r unused e n t r i e s i n [TOKYO. i n i ]

in la INLA . . .

S i z e o f f u l l g raph =[732 ]

Found o p t i m a l r e o r d e r i n g =[amd ]

L i s t o f h y p e r p a r a m e t e r s :

t h e t a [ 0 ] = [ log−p r e c i s i o n f o r l a t e n t −rw2 ]

Maximise m a r g i n a l f o r hyperparam : l o g ( d e n s i t y ) = −332.2833 t h e t a = 8 .826705

Maximise m a r g i n a l f o r hyperparam : l o g ( d e n s i t y ) = −332.2833 t h e t a = 8 .826704

Compute t h e H e s s i a n u s i n g c e n t r a l d i f f e r e n c e s and s t e p s i z e [ 0 . 0 0 1 ] . Matr ix−t y p e [ dense ]

3 .757422

E i g e n v e c t o r s o f t h e H e s s i a n

1 .000000

E i g e n v a l u e s o f t h e H e s s i a n

3 .757422

StDev / C o r r e l a t i o n m a t r i x ( s c a l e d i n v e r s e H e s s i a n )

0 .515887

S e a r c h : c o o r d i n a t e 0 d i r e c t i o n −1

c o n f i g 0=[ −1] l o g ( r e l . dens ) = −0.46 , a c c e p t , compute , 0 . 1 0 s

c o n f i g 1=[ −2] l o g ( r e l . dens ) = −1.68 , a c c e p t , compute , 0 . 1 0 s

c o n f i g 2=[ −3] l o g ( r e l . dens ) = −3.44 , d i f f t o l a r g e , s t o p s e a r c h i n g

S e a r c h : c o o r d i n a t e 0 d i r e c t i o n 1

c o n f i g 3=[ 1 ] l o g ( r e l . dens ) = −0.54 , a c c e p t , compute , 0 . 1 1 s

c o n f i g 4=[ 2 ] l o g ( r e l . dens ) = −2.35 , a c c e p t , compute , 0 . 1 0 s
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c o n f i g 5=[ 3 ] l o g ( r e l . dens ) = −5.90 , d i f f t o l a r g e , s t o p s e a r c h i n g

F i l l −i n c o m p u t a t i o n s

c o n f i g 6=[ 0 ] l o g ( r e l . dens ) = −0.00 , a c c e p t , compute , 0 . 1 0 s

Combine t h e d e n s i t i e s wi th r e l a t i v e w e i g h t s :

c o n f i g 0 / 5=[ −1.00] we ig h t = 0 . 632 a d j u s t e d w e ig h t = 0 . 633 n e f f = 12 . 49

c o n f i g 1 / 5=[ −2.00] we ig h t = 0 . 186 a d j u s t e d w e ig h t = 0 . 209 n e f f = 14 . 19

c o n f i g 2 / 5=[ 1 . 0 0 ] w e i gh t = 0 . 584 a d j u s t e d w e i gh t = 0 . 585 n e f f = 9 . 6 9

c o n f i g 3 / 5=[ 2 . 0 0 ] w e i gh t = 0 . 095 a d j u s t e d w e i gh t = 0 . 107 n e f f = 8 . 5 3

c o n f i g 4 / 5=[ 0 . 0 0 ] w e i gh t = 1 . 000 a d j u s t e d w e i gh t = 0 . 963 n e f f = 11 . 00

Expec ted e f f e c t i v e number o f p a r a m e t e r s : 1 1 . 2 3 3 , # d a t a / # e f f . params : 32 . 58

Done .

s t o r e r e s u l t s i n d i r e c t o r y [ r e s u l t s 0 ]

s t o r e summary r e s u l t s i n [ r e s u l t s 0 / l a t e n t −rw2 / summary . d a t ]

s t o r e summary ( g a u s s i a n ) r e s u l t s

i n [ r e s u l t s 0 / l a t e n t −rw2 / summary−g a u s s i a n . d a t ]

s t o r e m a r g i n a l s i n [ r e s u l t s 0 / l a t e n t −rw2 / mar g ina l−d e n s i t i e s . d a t ]

s t o r e ma rg ina l−d e n s i t i e s ( g a u s s i a n )

i n [ r e s u l t s 0 / l a t e n t −rw2 / mar g ina l−d e n s i t i e s −g a u s s i a n . d a t ]

s t o r e ( symmet r i c ) kld ’ s i n [ r e s u l t s 0 / l a t e n t −rw2 / symmetr ic−k l d . d a t ]

s t o r e q u a n t i l e s i n [ r e s u l t s 0 / l a t e n t −rw2 / q u a n t i l e s . d a t ]

s t o r e q u a n t i l e s ( g a u s s i a n )

i n [ r e s u l t s 0 / l a t e n t −rw2 / q u a n t i l e s −g a u s s i a n . d a t ]

Wall−c l o c k t ime used on [TOKYO. i n i ]

P r e p a r a t i o n s : 0 . 025 s e c o n d s

Approx i n f e r e n c e : 5 . 007 s e c o n d s

Outpu t : 5 . 848 s e c o n d s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
T o t a l : 10 .880 s e c o n d s

From the above output we can follow what the inla program does: it first reads the different sections, builds

the model for the full latent field x, performs the INLA approximation and, finally, stores the results in the

appropriate directories. The whole procedure takes less than 10 seconds on Machine 1 and about 2 seconds

on Machine 2.

Note that in the output is also reported, for each computed configuration of the hyperparameters, the estimated

number of effective parameters (neff), Rue et al. (2007) suggest these as a way to check the accuracy of the

approximation of π(θ|y). Namely, if the number of effective parameters is small compared to the number of

data, then we can expect the approximation to be accurate. In this case the ratio between the number of data

and the effective number of parameters is around 32, thus suggesting a good quality of the approximation.

The results are stored in the the directory results . The program creates sub-directories to store separately

results for each component of the model. In our Tokyo example we have two sub-directories:

• predictor−term/

• latent −rw2/

The first one is an empty directory since by default the marginals for the predictor term are not computed, see

Appendix A.1.3. The second directory contains results for the latent RW2 model. The sub-directories where

the results are stored are printed in the last part of the output of the inla function.

The default results consist of five files for each sub-directory created, namely:

• marginal−densities−gaussian.dat

• summary−gaussian.dat

• marginal−densities . dat
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• summary.dat

• symmetric−kld.dat

Moreover we have two files containing the quantiles

• quantiles −gaussian.dat

• quantiles . dat

The names of the files are always the same for each sub-directory created. The files whose names ends with

−gaussian.dat contain results obtained using the Gaussian approximation to approximate the density of xt|y,θ
(see Rue et al. (2007), Section 3.2.1) while the other files contain results obtained using one of the improved

approximations for xt|y,θ described in Rue et al. (2007), i.e. the Laplace approximation or its simplified

version (default).

The file symmetric−kld.dat contains the (symmetric) Kullback-Leibler (KL) divergence between the Gaussian

and the (simplified) Laplace approximation to the marginal posterior densities, which we have plotted in

Figure 1, panel (b). In this example the divergence is larger for the winter months (November to February),

when the observed frequencies are lower, but it stays always very low. Rue et al. (2007) propose to use the

Kullback-Leibler distance to check the accuracy of the Gaussian approximation.
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Figure 1: Results for the Tokyo rainfall example

The “summary” files contain the mean and the standard deviation for each posterior density. There is one line

for each node in the RW2 model and each line is structured as follows:

t E(xt|y) σ(xt|y)

Also in the “quantiles” files each line refers to one node and is structured as follows:

t p(0) xt(0) p(1) xt(1) . . .

where p(j) and xt(j) are such that Prob(xt < xt(j)|y) = p(j), j = 0, 1, . . . . The number of columns in the

“quantiles” files depends on how many quantile values the user choose to compute. In our example there are

5 columns.

Figure 1, panel (a), displays the binomial frequencies and the approximated posterior mean with uncertainty

bounds for the underlying probabilities pt. The probability of rain is smaller in the winter months.
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The “marginal-densities” files contain the approximated marginal posterior densities. Again each line refers

to a different node in the RW2 model and the structure of each line is as follows

t xt0 π̃(xt0|y) xt1 π̃(xt1|y) . . . xtK π̃(xt(K−1)|y)

where (xt0, xt1, . . . , xt(K−1)) are K = 201 selected values of the variable xt and

(π̃(xt0), π̃(xt1), . . . , π̃(xt(K−1))) are the corresponding values of the density. Figure 1 (right) displays the

Gaussian approximation (broken line) and the simplified Laplace approximation (solid line) for the marginal

posterior density of x365|y, this node is chosen for being the one for which the KL divergence is maximised.

The following R code can be used to reproduce this figure

>marginal<-read.table("results0/latent-rw2/marginal.densities.dat")

>gaus.marginal<-read.table("results0/latent-rw2/marginal.densities-gaussian.dat")

>plot(marginal[1,seq(2,403,2)],marginal[1,seq(3,403,2)],type="l",

lwd=2,ylab="",xlab="")

>lines(gaus.marginal[1,seq(2,403,2)],gaus.marginal[1,seq(3,403,2)],

type="l",lwd=2,lty=2)

3.1.1 Implementing using the INLA package for R

Using the INLA package all data files are automatically build by the package itself starting from a usual R

data frame. The data set Tokyo is included in the INLA package and can be loaded as:

>data(Tokyo)

The first rows of the data frame are as following:

> Tokyo

y n time

0 2 1

0 2 2

The main function of the package is the inla() function. Its use is similar to that of the glm() R function

for solving generalised linear models, in addition, the function f() is used to define non linear terms like the

time effect in the Tokyo example.

The formula of the model in R is:

>formula <- y ˜ f(time,model="rw2",cyclic=TRUE,param=c(1,0.0001))-1

Note that (as for glm() function) the intercept is automatically added, so if it is not desired, it has to be

explicitly removed.

Once the formula is defined, we only have to call the inla() function specifying the likelihood family and

some additional parameters as following:

>mod.tokyo <- inla(formula,family="binomial",Ntrials=n,data=Tokyo)

The INLA package provides also a summary of the fitted model:

> summary(mod.tokyo)

Call:
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"inla(formula = formula, family = \"binomial\", data = Tokyo, Ntrials = n)"

The model has no fixed effects

Random effects:

Fixed PostMean PostSD

time : prec FALSE 11196.92 6064.60

Expected number of effective parameters(std dev) :9.87(1.49)

Number of equivalent replicates : 37.09

Posterior marginals for linear predictor and fitted values computed

and the possibility to plot the most relevant features of the fitted model as

>plot(mod.tokyo)

More information about the inla() and f() functions can be found by typing

>?inla

>?f
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3.2 A time series with seasonal component: the drivers data

The second example is also taken from Rue and Held (2005, Sec 4.4.2). It is again a time series but here we

decompose the latent variables ηt into a trend and a seasonal component.

Example 2 The data consist in monthly counts of car drivers in Great Britain killed or seriously injured in

car accidents from January 1969 to December 1984. The time series has nd = 192 data points and exhibits a

strong seasonal pattern. One of our goals is to predict the pattern of counts in the 12 month following the last

observation.

We assume the squared root of the counts yt to be conditionally independent Gaussian random variables:

yt|ηt, λy ∼ N (ηt, 1/λy), t = 0, . . . , nd − 1

The conditional mean ηt is then a sum of a smooth trend and a seasonal component:

ηt = seasont + trendt, t = 0, . . . , nη − 1 (7)

We assume the vector season = (season0, . . . , seasonnη−1) to follow the seasonal model in (3.58) of Rue and

Held (2005), with length 12 and unknown precision λseason, and the vector trend = (trend0, . . . , trendnη−1)
to follow a RW2 with unknown precision λtrend.

Note that we have that nη = nd + 12 = 204, since no observations yt are available for t = nd, nd +
1, . . . , nd + 11. For prediction we are interested in the posterior marginals of (ηnd

, . . . , ηnd+11).

There are three hyperparameters in the model θ = (log λy, log λseason, log λtrend) for which we choose the

following prior distributions:

λy ∼ LogGamma(4, 4)
λseason ∼ LogGamma(1, 0.1)
λtrend ∼ LogGamma(1, 0.0005)

See Rue and Held (2005) for more details.

The corresponding DRIVERS.ini file is as follows:

1 [ D r i v e r s da ta ]

2 t y p e = problem

3 d i r = r e s u l t s −%d

4 q u a n t i l e s = 0 .025 0 .975

5

6 [ P r e d i c t o r ]

7 t y p e = p r e d i c t o r

8 p a r a m e t e r s = 1 0 .0005

9 i n i t i a l = 13

10 f i x e d = 1

11 n = 204

12 compute=1

13

14 [ da ta ]

15 t y p e = da ta

16 l i k e l i h o o d = g a u s s i a n

17 f i l e n a m e = s q r t −d r i v e r s . d a t

18 p a r a m e t e r s = 4 4

19 i n i t i a l = −2

20

21 [ t r e n d ]
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22 t y p e = f f i e l d

23 c o v a r i a t e s = t i m e . d a t

24 n=204

25 model = rw2

26 p a r a m e t e r s = 1 0 .0005

27 i n i t i a l = 7

28

29 [ s e a s o n a l ]

30 t y p e = f f i e l d

31 model = s e a s o n a l

32 c o v a r i a t e s = t i m e . d a t

33 n = 204

34 s e as on =12

35 p a r a m e t e r s = 1 0 . 0 1

36 i n i t i a l = 10

37

38 [ INLA p a r a m e t e r s ]

39 t y p e = INLA

40 h = 0 .001

We go briefly through the ini file ,section by section, highlighting the difference with the previous example.

• [Drivers data] section: specifying the quantiles in type=problem section (line 4) , will make the program

compute quantiles for all nodes in the latent field.

• [Predictor] section: the precision is fixed to a high value (lines 9-12) to mimic the absence of an

unstructured term in the model. Anyway, since our goal is to predict the expected counts we ask the

program to compute posterior marginals for η as well (compute=1).

• [data] section: for Gaussian likelihood the data file has the following format

t wt yt

where wt are fixed weights, see Appendix A.1.2. Note that in this example the length of the observed

data (194) is smaller than the length of the latent variables vector η (204).

• [trend] section: defines the RW2 model for the trend component. At line 26 we also define a starting

value for log λtrend for the optimiser.

• [seasonal] section: defines the model for the seasonal component of the model, the parameter season at

line 34 defines the season length

• [INLA parameters]: this is an optional section, defined by type=INLA, which specifies some param-

eters to be passed to the GMRFLib library, in this case we specify the step length for the numerical

computation of the gradient and the Hessian of π̃(θ|y) at its mode, see Appendix for details.

Building and solving the model takes about 10 seconds on Machine 1 and about 3 seconds on Machine 2.

Figure 2 displays the observed and expected counts in the squared root scale (together with 0.025 and 0.975

quantiles). Following is the R code used to produce Figure 2:

# Read t h e f i l e s

> data=read.table("sqrt-drivers.dat")

> pred=read.table("results-0/predictor/summary.dat")

> quant=read.table("results-0/predictor/quantiles.dat")

#Make t h e p l o t

17



35
40

45
50

Jan69 Jan71 Jan73 Jan75 Jan77 Jan79 Jan81

Figure 2: Observed and predicted counts (posterior mean within 0.025 and 0.975 quantiles) for the drivers

data example without the seat belt covariate

> plot(data[,3],pch=19,xlim=c(0,205))

> lines(pred[,2])

> lines(quant[,3],lty=2)

> lines(quant[,5],lty=2)

We consider now a slight modification of Example 2 as discussed by Rue and Held (2005, Sec 4.2.2):

Example 2 cont. On January 1983 wearing seat belt became compulsory. To check whether this law had an

effect on the number of serious accidents we modify the model as follows:

ηt =

{
season(t) + trend(t) t = 0, . . . , 168
season(t) + trend(t) + β t = 169, . . . , 204.

We assign additional parameter β a Gaussian distribution with 0 precision, equivalent to a flat prior.

Modifying the DRIVERS.ini file to account for the extended model is really easy; it is enough to add a new

section as below:

1 [ b e l t ]

2 t y p e= l i n e a r

3 c o v a r i a t e s = b e l t . d a t

4 p r e c i s i o n =0

The type=linear parameter specifies that the new covariate has a lines effect, the file belt.dat is as follows

0 0
...

...

168 0
169 1

...
...

203 1

Figure 3 displays the approximate posterior marginal density for β together with 0.025 and 0.975 quantiles.

The 95% confidence region is well below 0 indicating a significant effect of the seat belt law in reducing

the number of dead or injured drivers. Finally, the observed and expected counts in the squared root scale

(together with 0.025 and 0.975 quantiles) for the model with the seat belt covariate are displayed in Figure 4,

a slightly better fit of this model before and after January 1983 is visible.
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Figure 3: Approximate posterior marginal for parameter β with 0.025 and 0.975 quantiles

3.2.1 Implementing using the INLA package for R

Also the Drivers data set is included in the INLA package, and can be loaded as:

>data(Drivers)

The formula for the model without belt effect is the following:

>formula<-sqrt(y)˜f(trend,model="rw2",param=c(1,0.0005),initial=-3)+

f(seasonal,model="seasonal",season.length=12,param=c(1,0.1),initial=2)

Note that the sum-to-zero constraint is set automatically for all intrinsic models (like the RW2 in this case).

The call to the inla() function is:

>mod=inla(formula,family="gaussian",data=Drivers,control.data=list(param=c(4,4),

initial=-6),control.inla=list(h=0.01))

If we want to fit the model with belt effect the only thing to do is to add the covariate belt to the model’s

formula so that it becomes:

>formula<-sqrt(y)˜belt+f(trend,model="rw2",param=c(1,0.0005),initial=-3)+

f(seasonal,model="seasonal",season.length=12,param=c(1,0.1),initial=2)

The call to the inla() function stays exactly the same.
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Figure 4: Observed and predicted counts (posterior mean within 0.025 and 0.975 quantiles) for the drivers

data example with seat belt covariate
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3.3 Stochastic volatility models

Stochastic volatility models are common models in financial time series analysis, lately much interest has been

shown in developing efficient MCMC methods for such models, e.g. Shephard and Pitt (1997) and Chib et al.

(2002). In the following example, we show how easily a univariate stochastic volatility model can be solved

using the inla program. The example is taken from Rue et al. (2007) but the model is slightly modified here.

Example 3 The data consist in 945 observed logarithms of the daily difference of the dollar-pound exchange

rate from October 1st, to June 28th, 1985. The data are displayed in Figure 5, panel (a). We analyse this data

set using a univariate stochastic volatility model (Taylor, 1986). The likelihood of the data, conditional on the

latent variables is:

yt|ηt ∼ N (0, exp(ηt)), t = 0, . . . , nd − 1 (8)

and the model for the latent variables:

ηt = µ+ ft t = 0, , nη − 1 (9)

where µ is an unknown common mean with vague Gaussian prior and f = (f0, . . . , fnη−1) is modelled as an

auto regressive process of order 1 (AR1) with persistence parameter φ ∈ (−1, 1) to ensure stationarity, and

precision parameter λf .

The model has two hyperparameters, (log λf , φ). We re-parametrise the persistence parameter φ as

κ = logit

(
φ+ 1

2

)

and assign the following prior distributions

log λf ∼ LogGamma(1, 0.0005)
κ ∼ N (0, 1/0.0001)

The VOLATILITY.ini file defining the model is the following:

1 [ S t a n d a r d V o l a t i l i t y ]

2 t y p e = problem

3 d i r = r e s u l t s −%d

4

5 [ P r e d i c t o r term ]

6 t y p e = p r e d i c t o r

7 n = 1001

8 i n i t i a l = 13

9 f i x e d = 1

10 compute=1

11

12 [ Data ]

13 t y p e = da ta

14 l i k e l i h o o d = s t o c h v o l

15 f i l e n a m e = poundd . d a t

16

17 [AR1]

18 t y p e = f f i e l d

19 model = ar1

20 c o v a r i a t e s =t i m e . d a t

21 n=1001

22 p r i o r 0=loggamma ; p r i o r f o r t h e log−p r e c i s i o n
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23 i n i t i a l 0 =3 ; i n i t i a l v a l u e f o r t h e log−p r e c i s i o n

24 p a r a m e t e r s 0 = 1 . 0 0 .0005 ; p a r a m e t e r s f o r t h e Gamma p r i o r o f t h e p r e c i s i o n

25

26 p r i o r 1=g a u s s i a n ; p r i o r f o r \ kappa

27 i n i t i a l 1 =4 ; i n i t i a l v a l u e f o r \ kappa

28 p a r a m e t e r s 1 = 0 0 .0001 ; p a r a m t e r s f o r t h e Gauss ian p r i o r o f \ kappa

29

30 [Common mean ]

31 t y p e= l i n e a r

The likelihood for the stochastic volatility model is named stochvol (line 14) and the format of the data file is

t yt

As in Example 2, the precision for the unstructured term λη is fixed, but we compute the marginal posteriors

distributions for the elements of vector η.

The AR1 model for f is defined in lines 17-28. Unlike all other models at the moment available for the

ffield section, the AR1 has two hyperparameters, namely the precision parameter λf , and the transformed

persistence parameter κ. Lines 22-24 specify the prior and the starting value for the precision parameter λf ,

and lines 26-28 do the same for parameter κ.

The last section of the ini file describes the model for the common mean, the default value for the precision

is used here.

Note that the length of the data set nd is 945 but we have set the length of the latent variable vector η, to be

nη = 1001 (lines 7 and 21). In this way we obtain also predictions for the unobserved volatility for the 56

days following the last observation.
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Figure 5: Data and results for the volatility model in Example 3

Building and running the model takes around 110 seconds on Machine 1 and 26 seconds on Machine 2.

Figure 5, panel (b), display the approximate posterior mean for the logarithm of the unobserved volatility,

together with 0.025 and 0.975 posterior quantiles. The vertical line indicates the last observed data point.

An alternative model for the response variable yt is a Student-t. This allows heavier tail, a feature which is

often observed in financial time series. The observation model in equation (8) then becomes

yt = exp(ηt/2) Tt(ν) t = 1, . . . , T (10)
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where Tt(ν) is a random variable having a Student-t distribution having ν degree of freedom and standardised

so that its variance is 1 for any value of ν > 2. To implement the new model it is sufficient to substitute the

[Data] section (lines 12-15) with

1 [ Data ]

2 t y p e=da ta

3 l i k e l i h o o d =s t o c h v o l t

4 f i l e n a m e=poundd . d a t

Yet another model is the normal inverse Gaussian (NIG) distribution, for which

yt = exp(ηt/2) NIG, t = 1, . . . , T (11)

where NIG is a standardised NIG distribution with two parameters, which (essentially) are skewness and

shape-parameters. To implement the NIG model it is sufficient to substitute the [Data] section (lines 12-15)

with

1 [ Data ]

2 t y p e=da ta

3 l i k e l i h o o d =s t o c h v o l n i g

4 f i l e n a m e=poundd . d a t

3.3.1 Implementing using the INLA package for R

TO BE COMPLETED.
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3.4 Bivariate meta-analysis of sensitivity and specificity

[This subsection (including the example-files), was kindly provided by Andrea Riebler and Michaela Paul, from the

University of Zurich. Thanks!]

The bivariate model is a model for meta-analysing diagnostic studies reporting pairs of sensitivity and speci-

ficity (Reitsma et al., 2005). Preserving the bivariate structure of the data, pairs of sensitivity (Se) and speci-

ficity (Sp) are jointly analysed. Any existing correlation between these two measures is taken into account via

random effects. Covariates can be added to the bivariate model and have a separate effect on sensitivity and

specificity.

Example 4 Data are taken from a meta-analysis conducted by Scheidler et al. (1997) to compare the utility

of three types of diagnostic imaging - lymphangiography (LAG), computed tomography (CT) and magnetic

resonance (MR) - to detect lymph node metastases in patients with cervical cancer. The dataset consists of a

total of 46 studies: the first 17 for LAG, the following 19 for CT and the last 10 for MR. We analyse this data

set using a generalised linear mixed model approach (Chu and Cole, 2006).

TNi|µi ∼ Bin(TNi + FPi, Spi), logit(Spi) = Xiα + µi, (12)

TPi|νi ∼ Bin(TPi + FNi, Sei), logit(Sei) = Ziβ + νi, (13)

(
µi

νi

)
∼ N

[(
0

0

)
,

(
1/τµ ρ/

√
τµτν

ρ/
√
τµτν 1/τν

)]
, (14)

where TN, FP, TP and FN represent the number of true negatives, false positives, true positives, and false

negatives, respectively and Xi,Zi are (possibly overlapping) vectors of covariates related to Sp = TN
TN+FP

and Se = TP
TP+FN

. The index i represents study i in the meta-analysis. Here, Xiα = αLAG · LAGi + αCT ·
CTi + αMR · MRi and Ziβ = βLAG · LAGi + βCT · CTi + βMR · MRi whereby

LAGi =

{
1 if i = 0, . . . , 16

0 else
CTi =

{
1 if i = 17, . . . , 35

0 else
MRi =

{
1 if i = 36, . . . , 45

0 else

The model has three hyperparameters θ = (log τµ, log τν , ρ). The correlation parameter is constrained to

[−1, 1]. We reparameterise the correlation parameter ρ using Fisher’s z-transformation as

ρ? = logit

(
ρ+ 1

2

)

which assumes values over the whole real line and assign the following prior distribution to ρ?

ρ? ∼ N (0, 1/0.4)

The prior precision of 0.4 corresponds, roughly, to a uniform prior on [−1, 1] for ρ. For the other hyperpa-

rameters we assign the following prior distributions

log τµ ∼ LogGamma(0.25, 0.025)

log τν ∼ LogGamma(0.25, 0.025)

The BIVARIATE-METAANALYSIS.ini file defining the model is the following:

1 [ B i v a r i a t e meta−a n a l y s i s ]

2 t y p e = problem
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3 d i r = r e s u l t s −%1d

4 h y p e r p a r a m e t e r s = 1

5 q u a n t i l e s = 0 .025 0 . 5 0 .975

6

7 [ P r e d i c t o r term ]

8 t y p e = p r e d i c t o r

9 n = 92

10 i n i t i a l = 12

11 f i x e d = 1

12

13 [ Data ]

14 t y p e = da ta

15 l i k e l i h o o d = b i n o m i a l

16 f i l e n a m e = s c h e i d l e r . d a t

17

18 [2 d i i d ]

19 t y p e = f f i e l d

20 model = 2 d i i d

21 n = 46

22 c o v a r i a t e s = s c h e i d l e r cov . d a t

23 p a r a m e t e r s 0 = 0 . 2 5 0 .025

24 p a r a m e t e r s 1 = 0 . 2 5 0 .025

25 p a r a m e t e r s 2 = 0 0 . 4

26

27 [ C o v a r i a t e l ymphang iography TP]

28 d i r = f i x e d . e f f e c t l a g t p

29 t y p e = l i n e a r

30 c o v a r i a t e s = c o v a r i a t e l a g t p . d a t

31

32 [ C o v a r i a t e l ymphang iography TN]

33 d i r = f i x e d . e f f e c t l a g t n

34 t y p e = l i n e a r

35 c o v a r i a t e s = c o v a r i a t e l a g t n . d a t

36

37 [ C o v a r i a t e computed tomography TP]

38 d i r = f i x e d . e f f e c t c t t p

39 t y p e = l i n e a r

40 c o v a r i a t e s = c o v a r i a t e c t t p . d a t

41

42 [ C o v a r i a t e computed tomography TN]

43 d i r = f i x e d . e f f e c t c t t n

44 t y p e = l i n e a r

45 c o v a r i a t e s = c o v a r i a t e c t t n . d a t

46

47 [ C o v a r i a t e m a g n e t i c r e s o n a n c e TP]

48 d i r = f i x e d . e f f e c t mr t p

49 t y p e = l i n e a r

50 c o v a r i a t e s = c o v a r i a t e mr t p . d a t

51

52 [ C o v a r i a t e m a g n e t i c r e s o n a n c e TN]

53 d i r = f i x e d . e f f e c t mr t n

54 t y p e = l i n e a r

55 c o v a r i a t e s = c o v a r i a t e mr t n . d a t

56

57 [ INLA p a r a m e t e r s ]

58 t y p e = INLA
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The bivariate model is defined in lines 18-25. The section is defined by type= ffield . The bivariate model in

equation (14) is named 2diid in the inla program, and defines the vector of length 2n (BE AWARE!!!), with

contents

µ0, ν0, µ1, ν1, . . . , µn−1, νn−1

and τµ as the 0’th parameter, τν as the 1’st parameter and ρ as the 2’nd parameter.

The parameters a and b for the LogGamma prior for the log precision parameter log τµ are specified in line

23 those for log τν in line 24. The mean and precision for the normal prior for ρ? are specified in line 25. The

data file scheidler.dat has the following format:

0 TP 0 + FN0 TP 0

1 TN0 + FP 0 TN0

2 TP 1 + FN1 TP 1

3 TN1 + FP 1 TN1

...
...

...

90 TP 45 + FN45 TP 45

91 TN45 + FP 45 TN45

All covariate files have to be specified in the same structure so that values for TP and TN alternate.

Table 1 displays summary estimates of sensitivity and specificity with corresponding 95% credibility region

for the three imaging modalities.

Imaging Sensitivity Specificity

Median 2.5%-quantile 97.5%-quantile Median 2.5%-quantile 97.5%-quantile

LAG 0.69 0.57 0.79 0.83 0.76 0.89

CT 0.49 0.36 0.62 0.93 0.89 0.96

MR 0.55 0.37 0.71 0.95 0.91 0.98

Table 1: Bivariate meta-analysis: summary estimates for sensitivity and specificity.

3.4.1 Implementing using the INLA package for R

To implement the disease mapping example load the data file:

>data(BivMetaAnalysis)

The model formula is defines as:

formula <- Y∼f(diid,model="2diid",param=c(0.25,0.025,0.25,0.025,0,0.4))
+lag.tp+ lag.tn+ ct.tp+ ct.tn+ mr.tp+ mr.tn -1

Finally the call to the inla() function:

model=inla(formula,family="binomial", data=BivMetaAnalysis, Ntrials=N)

3.4.2 The Wishart-prior

The model “2diidwishart” is similar to the bivariate joint prior above, but use the Wishart-prior

Precision

(
µi

νi

)
∼ Wishartp(r,R

−1), p = 2
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where the Wishart distribution has density

π(W ) = c−1|W |(r−(p+1))/2 exp

{
−1

2
Trace(WR)

}
, r ≥ p+ 1

and

c = 2(rp)/2|R|−r/2π(p(p−1))/4
p∏

j=1

Γ((r + 1 − j)/2).

Then,

E(W ) = rR−1, and E(W−1) = R/(r − (p+ 1)).

Only small changes in the .ini file is required, and only in the 2diid section

1 [2 d i i d ]

2 t y p e = f f i e l d

3 model = 2 d i i d w i s h a r t

4 n = 46

5 c o v a r i a t e s = s c h e i d l e r cov . d a t

6 p r i o r = w i s h a r t

7 p a r a m e t e r s = 4 1 2 0 . 1

The name of the prior is fixed to be Wishart. Its parameters are given a

parameters = r R11 R22 R12

so in the above example r = 4, R11 = 1, R22 = 2 and R12 = 0.1, where

R =

(
R11 R12

R21 R22

)

and R12 = R21 due to symmetry. The reported hyperparameters are τ1, τ2 and ρ as given in (14), and are the

same as for the the other prior given above.

3.4.3 Implementing using the INLA package for R

To implement the disease mapping example load the data file:

>data(BivMetaAnalysis)

The model formula is defines as:

formula <- Y ∼ f(diid,model="2diidwishart", param=c(4,1,2,0.1)

+ lag.tp + lag.tn + ct.tp + ct.tn + mr.tp + mr.tn

- 1

Finally the call to the inla() function:

model=inla(formula,family="binomial", data=BivMetaAnalysis, Ntrials=N)
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3.4.4 The Wishart-prior (part II)

In the case where, say,

(a0, b0), (a1, b1), . . . , (an, bn)

are n-samples from a 2D-normal with a Wishart prior as described above, and the model is for example

ηi = ai + bici + . . .

it is not possible to formulate this using the model = “2diidwishart” since a linear combination of each pair

occur in the predictor. For such cases, the model has to specified as

• model= “2diidwishartpart0” for {ai}

• model= “2diidwishartpart1” for {bi}

where the Wishart-prior is only specified for model = “2diidwishartpart0”. This is more clear if we do the

R-code for the bivariate meta-analysis of sensitivity and specificity -example, using both formulations:

data(BivMetaAnalysis)

### F o r m u l a t i o n 1 :

formula <- Y∼f(diid,model="2diidwishart",param=c(4,1,2,0.1))
+ lag.tp + lag.tn + ct.tp + ct.tn + mr.tp + mr.tn

- 1

model = inla(formula,family="binomial", data=BivMetaAnalysis,

Ntrials=N,keep=TRUE)

# g e t more a c c u r a t e e s t i m a t e s o f t h e h y p e r p a r a m e t e r s

h = inla.hyperpar(model)

## F o r m u l a t i o n 2 :

## we know t h a t d i i d = 1 : n . Ass ign odd numbers t o p a r t 0 and t h e even ones t o

p a r t 1

n = dim(BivMetaAnalysis)[1]

k = rep(NA,n)

k[ seq(1, n, by = 2) ] = 1:(n/2)

BivMetaAnalysis2 = cbind(BivMetaAnalysis, "diid.part0" = k)

k = rep(NA,n)

k[ seq(2, n, by = 2) ] = 1:(n/2)

BivMetaAnalysis2 = cbind(BivMetaAnalysis2, "diid.part1" = k)

formula2 <- Y ∼ f(diid.part0,model="2diidwishartpart0", param=c(4,1,2,0.1))

+ f(diid.part1,model="2diidwishartpart1")

+ lag.tp + lag.tn + ct.tp + ct.tn + mr.tp + mr.tn

- 1

model2 = inla(formula2,family="binomial", data=BivMetaAnalysis2, Ntrials=N)

# g e t more a c c u r a t e e s t i m a t e s o f t h e h y p e r p a r a m e t e r s

h2 = inla.hyperpar(model2)

Note that the Wishart-prior is only specified for part0.

For the .ini-file for inla, we get similarly
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[2diid-part0]

type = ffield

model = 2diidwishartpart0

n = 46

covariates = scheidler_cov_part0.dat

parameters = 4 1 2 0.1

[2diid-part1]

type = ffield

model = 2diidwishartpart1

n = 46

covariates = scheidler_cov_part1.dat

Of’course, both part0 and part1 has to have the same length.

If more than one pair of “2diidwishartpart0/1” is defined, the following rule is used to determine the match

between part0 and part.

The first occurrence of “2diidwishartpart0” belongs with the first occurrence of “2diidwishart-

part1”. The second occurrence of “2diidwishartpart0” belongs with the second occurrence of

“2diidwishartpart1” and so on.

3.4.5 The Wishart-prior (part III)

The previous formulation is also available for 3D. In this case the name the prior is fixed to be Wishart3d.

The parameters in the prior are

parameters = r R11 R22 R33 R12 R13 R23

where

R =



R11 R12 R13

R12 R22 R23

R13 R23 R33




The reported hyperparameters are the marginal precisions τ1, τ2 and τ3 and the correlations ρ12, ρ13 and ρ23.

The model names are as given in the following example.

formula2 <- Y ∼ f(diid.part0,model="3diidwishartpart0",

param=c(7,1,2,3,0.1,0.2,0.3))

f(diid.part1,model="3diidwishartpart1") +

f(diid.part2,model="3diidwishartpart2") +

If more than one pair of “3diidwishartpart0/1/2” is defined, the following rule is used to determine the match

between part0, part1 and part2.

The first occurrence of “3diidwishartpart0” belongs with the first occurrence of “3diidwishart-

part1” and “3diidwishartpart2”. The second occurrence of “3diidwishartpart0” belongs with the

second occurrence of “3diidwishartpart1” and the second occurrence of “3diidwishartpart2”, and

so on.
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3.5 Bayesian multiscale analysis for time series data

In the previous examples we were interested in the posterior marginals π(xi|y) where the uncertainty about the

hyperparameter θ is integrated out. We present here one example where it is important to be able to precisely

estimate posterior marginals for a fixed value of the hyperparameter θ, that is π(xi|y,θ). The example is

taken from Rue et al. (2007).

Example 5 A signal is observed with noise and the goal of the analysis is to detect significant features and

structures in the signal. Since some features might be visible only at some specific level of smoothing it is in-

teresting to consider several levels of smoothing simultaneously. This is the idea behind the SIZer (Significant

ZERo crossing of derivatives) methodology, see Chaudhuri and Marron (1999) and Erästö (2005).

In our example the data are Gamma ray burst intensity, plotted in Figure 6 (panel (a)). The observations are

assumed to be conditionally independent Poisson random variables

y(ti)|η(ti) ∼ Po{exp(η(ti))} i = 0, 1, . . .

Where η(t) is the underlying signal of interest. We assume η(t) to be continuous with derivatives η′(t), and

level of smoothing κ. The derivative is said to be “significant positive” at time t if

Prob(η′(t) > 0|y, κ) > 1 − α/2

with α being the level of significance. A similar definition holds for “significant negative”.

We model η(t) as an integrated Wiener process with precision κwhich is Markov if augmented with derivatives

(Wecker and Ansley, 1983), hence a discretely observed Wiener process observed in n time points is a GMRF

of dimension 2n, see Rue and Held (2005, Sec. 3.5). Our latent GMRF is then x = (η,η′), that is the

log-mean of the data augmented with its derivatives.

In this example the precision κ is fixed therefore there are no random hyperparameters in the model.

The file BURST.ini is as follows:

1 [ B u r s t da ta example ]

2 t y p e = problem

3 d i r = r e s u l t s −%d

4 smtp = GMRFLib SMTP BAND

5

6 [ P o i s s o n da ta ]

7 t y p e = da ta

8 l i k e l i h o o d = p o i s s o n

9 f i l e n a m e = b u r s t . d a t

10

11 [ P r e d i c t o r term ]

12 t y p e = p r e d i c t o r

13 n = 512

14 i n i t i a l = 10

15 f i x e d = 1

16

17 [ Smoother ]

18 t y p e = f f i e l d

19 model = crw2

20 n = 512

21 c o v a r i a t e s = covar . d a t

22 i n i t i a l = 7

23 f i x e d = 1

24 c d f = 0
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The smtp field in the [Burst data example] section (line 4) determines the type of solver for dealing with sparse

matrices, in this case, since we know that the precision matrix of the problem is a band matrix, we can use the

GMRFLib SMTP BAND solver which is optimal for band matrices.
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Figure 6: Multiscale analysis example: (a) observed Gamma ray burst intensity, (b) posterior mean for the

underlying signal η(t) for level of smoothing given by log κ = 7, (c) posterior mean of the derivatives η′(t) is

displayed. The band in the lower part of the figure indicates where the derivatives are found to be significantly

positive (white), negative (black) or none (grey).

Notice that all precision parameters are defined fixed in the ini file (lines 15 and 23). The log-precision of

the [ Predictor term] section is fixed to a high value (line 14) again to mimic the absence of the unstructured

component in the model, while the log-precision in the [Smoother] section is fixed to a user defined value, in

this case log κ = 7. This determines the level of smoothing in the result. The continuous time random walk

model is defined in line 19. Note that even if the length of the smoother term is declared to be 512 (line 20)

the actual length of the output file is 1024 since the derivatives are also included. The derivatives constitutes

the second half of the output file.

Since we are interested in checking where the derivatives are significantly positive or negative, we compute

also the cummulative distribution function (cdf) Prob(x(t) < 0) for the smoother term (line 24). Figure 6

(panel (b)) displays the posterior mean of η(t) for log κ = 7. In Figure 6(panel(c)) the posterior mean of the

derivatives η′(t) is displayed. The band in the lower part of Figure 6(c) indicates where the derivatives are

found to be significantly positive, negative or none. Figure 6(c) is produced using the following R code:

# Read t h e f i l e c o n t a i n i n g a p p r o x i m a t e mean a n d s d

>smooth=read.table("results-0/smoother/summary.dat")

# s e l e c t t h e a p p r o x i m a t i o n s f o r t h e d e r i v a t i v e s

>deriv=smooth[513:1024,]

>xx=deriv[,2]

# C r e a t e t h e g r a p h

>split.screen( rbind(c(0,1,0.3,1), c(0,1,0,0.3)))

>screen(1)

>par( mar=c(2,2,2,2), oma=c(3,3,2,3) )

>plot(xx[,2],type="l",ylab="",xlab="",xaxs="i")

>screen(2)

>par( mar=c(2,2,2,2), oma=c(3,3,2,3) )
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>image(1:512,1,mm,axes=F,col=gray(seq(0,1,len=3)))

The inla program runs in about 7 seconds on Machine 1 and about 2 seconds on Machine 2.
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3.6 Disease mapping

Our next example is taken from (Rue and Held, 2005, Sec. 4.4.2). The data are collected over a spatial domain

rather than over a time period. The data are georeferenced and we want to include the knowledge of the spatial

location of the data in the model.

Each observed data yi is linked to a spatial region s ∈ S = (0, . . . , S − 1), so that si indicates the region the

ith data belongs to. A common way to introduce a spatially correlated effect is to assume that neighbouring

sites are more alike than two arbitrary sites, therefore for a valid prior definition, a neighbourhood has to be

defined for each site s. In geographical applications a common assumption is that two sites are neighbours if

they share a common border.

Let fs(si) indicate the spatial effect. The prior model for f s = (f(0), . . . , f(s), . . . , f(S − 1)) implemented

in the inla program is a simple (but most often used) intrinsic GMRF model, see (Rue and Held, 2005, Ch.

3), defined as:

fs(s)|fs(s
′), s 6= s′, λs ∼ N (

1

ns

∑

s∼s′

fs(s
′),

1

nsλs
) (15)

where ns is the number of neighbours of site s, s ∼ s′ indicates that the two sites s and s′ are neighbours. λs

is the unknown precision parameter.

The neighbourhood structure has to be passed to the inla program through a file which describes the graph

of the spatial component of the model. We describe the required format for such a file using a small example.

Let the file gra.dat, relative to a small graph, be

5

0 1 1

1 2 0 2

2 3 1 3 4

3 1 2

4 1 2

Line 1 declares the total number of nodes in the graph, then, in lines 2-6 each node is described. For example,

line 4 states that node 2 has 3 neighbours and these are nodes 1, 3 and 4. This is the same format used in the

GMRFLib library.

Example 6 The number of cases of oral cavity cancer is observed for a 5 year period (1986-1990) in the 544

districts of Germany. The goal of the analysis is to explore the spatial distribution of the data. The common

approach is to assume that the data are conditionally independent Poisson counts

yi|ηi ∼ Po(Ei exp(ηi)) i = 0, . . . , 543 (16)

where Ei is a fixed quantity which accounts for number of people in district i, age distribution etc. The

standardised mortality ratios yi/Ei are displayed in Figure 7, panel (a).

The model for the latent variable ηi takes the following form

ηi = µ+ fs(si) + ui (17)

where µ is th common mean, f s is a spatially structured term and u is the unstructured term which accounts

for non-observed variability. The prior model for f s is the intrinsic GMRF in equation (15). We impose a

sum-to-zero restriction on f s (
∑

s f(s) = 0) to ensure identifiably of µ.

Following Rue and Held (2005), the two precision hyperparameters of the model (log λu, log λs) are both

given LogGamma priors with a = 1 and b = 0.01.
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Figure 7: Standardised mortality ratio for oral cavity cancer, panel (a) and estimated relative risks (posterior

mean) of the spatial component exp(f s).

The DISEASE-oral.ini file describing the model for the inla program is:

1 [ Oral−c a v i t y c a nc e r da ta ]

2 t y p e = problem

3 d i r = r e s u l t s −f o r−ora l−%d

4

5 [ P r e d i c t o r ]

6 t y p e = p r e d i c t o r

7 p r i o r = loggamma

8 p a r a m e t e r s = 1 0 . 0 1

9 n = 544

10

11 [ da ta ]

12 t y p e = da ta

13 l i k e l i h o o d = p o i s s o n

14 f i l e n a m e = o r a l . t x t

15

16 [ S p a t i a l ]

17 t y p e = f f i e l d

18 model = besag

19 c o v a r i a t e s = s p a t i a l . c o v a r i a t e

20 p a r a m e t e r s = 1 0 . 0 1

21 c o n s t r a i n t = 1

22 graph = germany . gra

23

24 [ C o n s t a n t ]

25 t y p e = l i n e a r

The [ predictor ] section (lines 5-9) defines the model for ηi. Unlike the previous examples, here there actually

is an unstructured component, therefore in this case λη is not fixed.

The model for the spatial component of fs(·) is defined in lines 16-22. The section is defined by type= ffield .

The intrinsic GMRF model in equation (15) is named besag in the inla program. Line 21 defines the sum-

to-zero constraint for f s. The graph of f s is read from a file (line 22). The last section, lines 24-25 defines
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the model for the common mean µ. Figure 7, panel (b), displays the posterior mean of the spatial component

exp(f s).

A different parametrisation would have been possible for the same model. Namely we could have dropped the

common mean µ and the sum-to-zero constraint. Modifying the ini file to account for this other parametri-

sation is extremely easy; it is, in fact, sufficient to remove lines 24-25 defining the common mean and line 21

defining the constraint.

The inla program allows also the possibility to introduce a user defined model for some functions f(·) in

equation (2). This is done in a type= ffield section specifying the field model = generic0. The user then has to

provide the precision function Q, corresponding to the stochastic vector f , in a file with the following format

i j Qij

where i and j are the row and column index and Qij is the corresponding element of the precision matrix.

Only the non-zero elements of the precision matrix need to be stored in the file. For example, we could have

stored the precision matrix corresponding to the spatial effect in (17) in a file, named Qmat.dat. We report

the few first lines of such file:

1 0 0 1

2 0 11 −1

3 1 1 2

4 1 9 −1

The same model as in (17) can then be defined in a new ini file as following:

1 [ Oral−c a v i t y c a nc e r − User d e f i n e d Q m a t r i x ]

2 t y p e = problem

3 d i r = r e s u l t s −%1d

4

5 [ P r e d i c t o r ]

6 t y p e = p r e d i c t o r

7 p r i o r = loggamma

8 p a r a m e t e r s = 1 0 . 0 1

9 n = 544

10

11 [ da ta ]

12 t y p e = da ta

13 l i k e l i h o o d = p o i s s o n

14 f i l e n a m e = o r a l . t x t

15

16 [ S p a t i a l ]

17 t y p e = f f i e l d

18 model = g e n e r i c

19 Qmatr ix = Qmat . d a t

20 r a n k d e f = 1

21 c o v a r i a t e s = s p a t i a l . c o v a r i a t e

22 p a r a m e t e r s = 1 0 . 0 1

23 c o n s t r a i n t = 1

24

25 [ C o n s t a n t ]

26 t y p e = l i n e a r

Notice that the only difference with respect to the ini file previously used is in the section [ Spatial ]. Here

we declare model = generic0 and specify the file containing the Q function in line 19. The inla program

then builds a graph based on the non-zero pattern of the specified precision matrix. The optional argument

rankdef, in line 20, specifies the rank deficiency of the precision matrix. For the intrinsic model in equation

(15) the rank deficiency is 1.
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3.6.1 Implementing using the INLA package for R

To implement the example load the data file:

>data(Oral)

When defining a formula in order to use the inla() function, each term specified through f() has to

correspond to a different column in the data set. In this case we have to effects ( the spatial structured and

the spatial unstructured one) for which the covariate assumes the same values, so we have to specify a new

column in the data set as:

>Oral<-cbind(Oral,region.struct=Oral$region)

The model formula is then defines as:

>formula<-Y∼f(region.struct,model="besag",graph.file="germany.graph",param=c(1,0.01))
+f(region,model="iid",param=c(1,0.01))

The graph file cannot be loaded into R and the path to the file has to be provided as a parameter of the f()

function.

Finally the call to the inla() function:

>mod <- inla(formula,family="poisson",data=Oral,E=E,control.inla=list(h=0.01))

Notice that because of the way the Poisson likelihood is defined, the fixed quantity E in equation 16 are

included through the parameter E and not through offset.

The BYM-model There is also alternative model named BYM which is simply the sum of the besag model

and the iid model.

>formula<-Y∼f(region.struct,model="bym",graph.file="germany.graph")

The main benefite is that this allow to get the posterior marginals of the sum fs(si) + ui, ie the sum of the

spatial and iid model; otherwise it offers no advantages. The hyperparameters are the two log-precisions

θ = (log λiid, log λbesag)

and the prior-parameters are defined as (aiid, biid, abesag, bbesag).
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3.7 Disease mapping with covariate

We present now an extension of the model in Example 6 which allows for adjusting the log-relative risk by

a semi-parametric function of a covariate which is believed to influence the risk. The model is a Bayesian

semiparametric model with an additional spatial effect. These kinds of models have been named “geoadditive

models” in Kammann and Wand (2003). For an introduction to the subject see, for example, Fahrmeir and

Tutz (2001). The example below is taken from Rue et al. (2007).

Example 7 Larynx cancer mortality counts are observed in the 544 district of Germany from 1986 to 1990.

As in Example 6 we assume the data to be conditionally independent Poisson random variables with mean

Ei exp(ηi), whereEi is fixed and accounts for demographic variation, and ηi is the log-relative risk. Together

with the counts, for each district, the level of smoking consumption c is registered.

The model for ηi takes the following form

ηi = µ+ fs(si) + f(ci) + ui (18)

where, as in Example 6, fs(·) is the spatial effect modelled according to (15), and ui is the unstructured

random effect. The remaining term in (18), f(ci), is the unknown effect of of the exposure covariate which as-

sumes value ci for observation i. The effect of covariate c is modelled as a smooth function f(·) parametrised

as unknown values f = (f0, . . . , fm−1)
T at m = 100 equidistant values of ci. We have scaled the covariate

values so that they belong to the interval [0, 10]. The vector f is modelled with a second-order random walk

(RW2) prior with unknown precision λf . A sum-to-zero constraint is imposed on f s and f separate out the

spatial effect and the effect of the covariate from the common mean µ.

The model has three hyperparameters θ = (log λs, log λf , log λη). Following Rue et al. (2007) we assign a

vague LogGamma prior to each element of θ.

In Figure 9 the standardised mortality ratios, yi/Ei are displayed (panel (a)) together with the observed values

of the covariate c (panel (b)).

The DISEASE-COVARIATE.ini file defining the model is the following:

1 [ D i s e a s e mapping w i t h c o v a r i a t e ]

2 t y p e = problem

3 d i r = r e s u l t s −%d

4

5 [ P r e d i c t o r term ]

6 t y p e = p r e d i c t o r

7 n = 544

8 p r i o r = loggamma

9 i n i t i a l =9

10 p a r a m e t e r s = 1 . 0 0 .00005

11

12 [ Data ]

13 t y p e = da ta

14 l i k e l i h o o d = p o i s s o n

15 f i l e n a m e = l a r y n x . d a t

16

17 [ S p a t i a l ]

18 t y p e = f f i e l d

19 model = besag

20 c o v a r i a t e s = s p a t i a l −c o v a r i a t e . d a t

21 p r i o r = loggamma

22 p a r a m e t e r s = 1 . 0 0 .00005
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Figure 8: Standardised mortality ratio for larynx cancer, panel (a) and observed covariate values, panel(b)

23 graph = germany . gra

24 c o n s t r a i n t = 1

25 i n i t i a l =3

26 d i a g o n a l = 0 .001

27

28 [ C o v a r i a t e ]

29 t y p e = f f i e l d

30 model = rw2

31 c o v a r i a t e s = c o v a r i a t e . d a t

32 l o c a t i o n s =c o v a r i a t e . v a l u e

33 p r i o r = loggamma

34 p a r a m e t e r s = 1 0 . 0 5

35 i n i t i a l =9

36 d i a g o n a l = 0 .00001

37 q u a n t i l e s =0.025 0 .975

38 c o n s t r a i n t = 1

39

40 [ C o n s t a n t l i n e a r ]

41 t y p e = l i n e a r

42

43 [ INLA param ]

44 t y p e = INLA

45 h = 0 .001

The section [ Spatial ] defines the model for the structured spatial component f s. We recognise the intrinsic

GMRF model in line 19 and the graph file in line 23. The field diagonal at line 36 indicates a (small) number

to be added to the diagonal of the precision matrix for f s to ensure that it is positive definite.

The model for the semi-parametric function f , which is the new feature introduced by this example, is defined

in the section tagged [Covariate]. The file covariate . value declared in line 32 contains all values that the

covariate c could assume, they are ordered from the lower to higher. In this case the file contains one sequence
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of numbers from 0 to 9.9 with step 0.1. The file covariate . dat contains information on which values of c is

actually observed in each district. We report the first 5 lines of the file to better explain the format of such files

1 0 56

2 1 65

3 2 50

4 3 63

5 4 65

For example, line 3 tells us that for district 2 the observed value of the covariate c is the 50th element of the

series in file covariate . value, that is 0.5.

In the last section, tagged [INLA param] we define the step length for the numerical computation of the gradient

and Hessian of π̃(θ|y) at the mode. This is necessary because the default values do not always ensure a

positive definite Hessian matrix.

−0.13

−0.01

0.1

0.22

0.34

0.45

0.57

Figure 9: Posterior mean for the structured spatial effect f s

The computation time is about 30 seconds on Machine 1 and 15 seconds on Machine 2.

Figure 9 displays the posterior mean of the spatial effect f s for all districts. To reproduce Figure 9 the
following R code has been used:

> source("draw-map.r")

> spatial=read.table("results-0/spatial/summary.dat")

> germany.map(spatial[,2])

The R code draw.map.r can be downloaded together with all the other example files.

Figure 10, panel (a), displays the effect of the covariate c (posterior mean) within 2.5 and 97.5% confidence

intervals. The covariate effect is not too far from a linear effect. We might, therefore, want to run a modified

version of the model in which the effect of c is modelled as a linear function, that is

ηi = µ+ fs(si) + βci + ui (19)

To modify the DISEASE-COVARIATE.ini file in order to fit the new model it is enough to delete the

[Covariate] section, lines 28-38 and instead add the following section where β is defined.
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Figure 10: Effect of the covariate. Panel (a) nonparametric model and panel (b) linear model: posterior mean

within 2.5 and 97.5% confidence interval.

1 [ C o v a r i a t e l i n e a r ]

2 t y p e= l i n e a r

3 c o v a r i a t e s =c o v a r i a t e − l i n e a r . d a t

The file covariate−linear. dat has the format

i ci

The computation time for the linear-effect model reduces to 11 seconds for Machine 1 and to 6 seconds

on Machine 2. This is due to the fact that in the linear model both the latent field x and the vectors of

hyperparameters θ are of lower dimensionality.

The estimated posterior mean for the slope parameter β is 0.0677 with posterior standard deviation 0.0126.

Figure 10, panel (b), displays the linear effect of the covariate within 0.025 and 0.975 quantiles. To com-

pute the quantiles for the regression line in Figure 10, panel (b), we have run the model described in the

DISEASE-COVARIATE.ini file fixing the log precision of the RW2 model to a high value. In this way the

RW2 is forced to be a straight line.

3.7.1 Implementing using the INLA package for R

This example is very similar to the previous one, we only have one covariate more to add to the model. As

before we need to add one column to the data set because we have both a structured and an unstructured spatial

effect:

>data(Germany)

>Germany<-cbind(Germany,region.struct=Germany$region)

The formula for the model with non parametric effect of the covariate is:

>formula<-Y∼f(region.struct,model="besag",graph.file="germany.graph",
param=c(1,0.00005),initial=2.8)+f(region,model="iid")+

f(x,model="rw2",param=c(1,0.05))+

while the one for the model with linear effect of the covariate is

>formula<-Y∼f(region.struct,model="besag",graph.file="germany.graph",
param=c(1,0.00005),initial=2.8)+x+f(region,model="iid")

where the only thing changed if the model for x. In both case the call to the inla() function is
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>mod<-inla(formula,family="poisson",data=Germany,E=E,

control.inla=list(h=0.01),verbose=TRUE)
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3.8 Mapping cancer incidence

We present a little more complicated example on the same line of examples 6 and 7. Instead of observing only

one data point for each district, in the next example there are multiple observations sharing the same spatial

location. Therefore, a possible unstructured spatial effect needs to be coded in a different way than in the two

previous examples. The example is taken from Rue and Held (2005, Sec 4.3.5).

Example 8 The data are incident cases of cervical cancer in the former East German Republic (GDR) from

1979, stratified by district and age group. Each cases was classified as pre-malignant (coded as 0) or malig-

nant (coded as 1). For each of the nd = 6 690 cases in the data set, the age, agei, and the district, si, of the

patient are available. The age was categorised into 15 age groups.

The data are assumed to be conditionally independent Bernoulli random variables:

yi|ηi ∼ B(pi) i = 0, . . . , nd

with logit link function

pi =
exp(ηi)

1 + exp(ηi)

The model for the latent variables is:

ηi = µ+ f(agei) + fs(si) + fu(si)

where f(age) is the age group effect, modelled as a RW2 with precision parameter λf . The spatial effect of the

district si is split into a spatially correlated part and an uncorrelated one. The spatially correlated element,

fs(·), is modelled as the intrinsic GMRF in equation (15) with given neighbouring structure. The uncorrelated

part, fu(·), is modelled as by a i.i.d Gaussian effect. Note that, in this model, the unstructured spatial effect

fu(·), does not coincide with the unstructured term ui in equation (2), which was the case in Examples 6 and

7.

There are three hyperparameters in the model θ = (log λf , log λs, log λu). Following Rue and Held (2005),

we assume a LogGamma(1.0, 0.01) prior distribution for log λs and log λu and a LogGamma(1.0, 0.00005)
prior for log λf . Moreover we impose a sum-to-zero constraint on both f and f s

The file CANCER-INCIDENCE.ini defining the model is:

1 [ Cancer i n c i d e n c e ]

2 t y p e = problem

3 d i r = r e s u l t s −%d

4

5 [ P r e d i c t o r ]

6 t y p e = p r e d i c t o r

7 n = 6690

8 i n i t i a l = 15

9 f i x e d = 1

10

11 [ L i k e l i h o o d model ]

12 t y p e = da ta

13 l i k e l i h o o d = b i n o m i a l

14 f i l e n a m e = c an c e r . d a t

15

16 [ Age c l a s s e s ]

17 t y p e = f f i e l d

18 model = rw2

19 c o v a r i a t e s = age−group−cov . d a t
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20 n=15

21 c o n s t r a i n t = 1

22 d i a g o n a l = 1 . 0 e−4

23 p a r a m e t e r s = 1 0 .001

24 i n i t i a l = 6 .456745

25 q u a n t i l e s =0.025 0 .975

26

27 [ S p a t i a l ]

28 t y p e = f f i e l d

29 model = besag

30 graph = ddr . gra

31 c o v a r i a t e s = s p a t i a l −cov . d a t

32 c o n s t r a i n t = 1

33 d i a g o n a l = 1 . 0 e−4

34 p a r a m e t e r s = 1 0 .0005

35 i n i t i a l = 8 .006793

36

37 [ S p a t i a l random e f f e c t ]

38 t y p e = f f i e l d

39 model = i i d

40 n = 216

41 p a r a m e t e r s = 1 0 . 0 1

42 c o v a r i a t e s = s p a t i a l −cov . d a t

43 i n i t i a l = 4 .512093

44

45 [ c o n s t a n t ]

46 t y p e = l i n e a r

47

48 [ Parame ter s f o r INLA ]

49 t y p e = INLA

50 h = 0 . 0 1

Note that while in Examples 6 and 7 the spatial unstructured component in the model was coded in the

type=predictor section of the ini file, here, for the same purpose, we have to include a type= ffield section

where model=iid (lines 37-43).

The model runs in about 90 seconds on Machine 1 and about 30 seconds on Machine 2.

In Figure 11 the posterior mean of the non-parametric effect of the age group within 2.5 and 97.5% confidence

band is dispayed.
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Figure 11: Nonparametric effect of age group. Posterior mean within 2.5 and 97.5% quantiles.
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3.8.1 Implementing using the INLA package for R

This is yet another example very similar to the previous two.

>data(Cancer)

>Cancer<-cbind(Cancer,region.struct=Cancer$region)

>formula <- Y∼f(region.struct,model="besag",graph.file="ddr.graph",
param=c(1,0.01))+f(Age,model="rw2",param=c(1,0.001))+

f(region,model="iid")

>mod <- inla(formula,family="binomial",data=Cancer,Ntrials=N,

control.inla=list(h=0.01))

The only difference is in the likelihood model used.
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3.9 Geoadditive model: Munich rental guide

In this section we present a slightly more complex example of geoadditive models where we have a higher

number of covariates in the data set. The example is taken from Rue and Held (2005, Sec. 4.2.1).

Example 9 - Munich rental guide

The response variable yi is the rent (Euro per square meter) for a flat in Munich. There are three covariates to

be included in the model: the spatial location (si), the floor space (sizei) and the year of construction (yeari).

Moreover for each data point we have a set of indicator variables such as whether or not the flat has central

heating, bathroom, a large balcony, etc. The data set consist in nd = 2 035 observations. There are 380

district in Munich, the floor size varies from 17 to 185 square meters and the year of construction goes from

1918 to 2001.

The model for the data is:

yi|ηi ∼ N (ηi, 1/λy)

with

ηi = µ+ fs(si) + f0(sizei) + f1(yeari) + zT
i β (20)

where fs(·) is the spatial effect modelled as the intrinsic GMRF in equation (15), f0(·) is the non parametric

effect of the floor size and f1(·) is the non parametric effect of the year of construction. Both f0(·) and f1(·)
are modelled as RW2 with unknown precision. The last term in (20) models the covariates assumed to have

a linear effect. As usual we choose a Gaussian prior with known precision for the elements of vector β. We

impose a sum-to-zero constraint on fs(·), f0(·) and f1(·).
The model has four hyperparameters θ = (log λy, log λs, log λ0, log λ1). We assign to each precision a

LogGamma(1.0, 0.001) prior. In this example we approximate also the posterior marginals for the four hy-

perparameters θ.

In the following we report part of the RENT.ini file which defines the model. We have omitted the part

defining most of the indicator variables since they are all defined in the same way.

1 [ Rent i n Munich ]

2 t y p e = problem

3 d i r = r e s u l t s −%d

4 h y p e r p a r a m e t e r s = 1

5

6 [ P r e d i c t o r term ]

7 t y p e = p r e d i c t o r

8 n = 2035

9 p a r a m e t e r s = 1 . 0 0 .001

10 i n i t i a l = 10

11 f i x e d = 1

12

13 [ Data ]

14 t y p e = da ta

15 l i k e l i h o o d = g a u s s i a n

16 f i l e n a m e = r e n t . d a t

17 p a r a m e t e r s = 1 0 .001

18 i n i t i a l = −1

19

20 [ f l o o r −s i z e ]

21 t y p e = f f i e l d

22 model = rw2

23 c o v a r i a t e s = s i z e −c o v a r i a t e . d a t
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24 l o c a t i o n s = s i z e −l o c . d a t

25 d i a g o n a l = 1 . 0 e−6

26 i n i t i a l = 7

27 c o n s t r a i n t = 1

28 p a r a m e t e r s = 1 0 .001

29 q u a n t i l e s = 0 . 2 5 0 .975

30

31 [ s p a t i a l ]

32 t y p e = f f i e l d

33 model = besag

34 graph = munich . gra

35 c o v a r i a t e s = s p a t i a l −c o v a r i a t e . d a t

36 d i a g o n a l = 0 .00001

37 c o n s t r a i n t = 1

38 i n i t i a l = 0 . 4

39 p a r a m e t e r s = 1 0 .001

40 compute=1

41

42 [ y ear ]

43 t y p e = f f i e l d

44 model = rw2

45 c o v a r i a t e s = year−c o v a r i a t e . d a t

46 l o c a t i o n s = year−l o c . d a t

47 d i a g o n a l = 1 . 0 e−6

48 i n i t i a l = 7

49 c o n s t r a i n t = 1

50 p a r a m e t e r s = 1 0 .001

51 q u a n t i l e s = 0 . 2 5 0 .975

52

53 [ c o n s t a n t ]

54 t y p e = l i n e a r

55 p r e c i s i o n = 0 . 0 1

56

57 [ l i n e a r −b e s t e . d a t ]

58 t y p e = l i n e a r

59 c o v a r i a t e s = beta−b e s t e . d a t

60 p r e c i s i o n = 0 . 0 1

61

62 .

63 .

64 .

65

66 [ INLA param ]

67 t y p e = INLA

68 i n t s t r a t e g y = GMRFLib AI INT STRATEGY CCD;

69 h = 0 . 0 1

The flag hyperparameters in line 4 section is turned on to indicate that also posterior marginals for the hyperpa-

rameters have to be computed. The results are displayed in Figure 12 and they agree well with tho use found

by Rue and Held (2005).

The new feature introduced in this example is the use of a different integration scheme to compute

π̃(xi|y) =
∑

k

π̃(xi|y,θk)π̃(θk|y)∆k (21)

When the dimension of the hyperparameters space grows, in fact, the grid integration scheme, which was used

in all previous examples and which is the default choice in the inla program, soon becomes too computa-
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Figure 12: Munich rent example: approximate posterior marginals for the hyperparameter of the model.

tionally intensive. The central composite design (CCD) integration scheme, defined in line 68, is an alternative

integration scheme which computes the integral in (21) using much less points, still providing useful results.

Both integration schemes are described in Rue et al. (2007).

Figure 16, panels (a) and (b), displays the posterior mean, within 0.25 and 0.975 quantiles, of the effect of the

floor size and the year of construction respectively.

To check the quality of the CCD integration scheme we run the model once more using the default grid

scheme (to do so it is enough to delete line 67). The results are plotted in Figure 13 as dotted lines, they are

indistinguishable from the CCD results despite the fact that the grid integration scheme used 115 evaluation

points to compute the integral in (21) and the CCD one only 15.

The computing time for this model on Machine 1 is of 80 seconds if we use the CCD scheme and 250 seconds

using the grid scheme. On Machine 2 the computational time reduces to 30 seconds in the first case and 70 in

the second case.

3.9.1 Implementing using the INLA package for R

>data(Munich)

>formula <- rent∼f(location,model="besag",graph.file="munich.graph",
param=c(1,0.001),initial=3.5)+

f(year,model="rw2",param=c(1,0.001),initial=4)+

f(floor.size,model="iid",param=c(1,0.001),initial=7)+Gute.Wohnlage+

Beste.Wohnlage+Keine.Wwv+ Keine.Zh+ Kein.Badkach+ Besond.Bad+

Gehobene.Kueche+ zim1+zim2+ zim3+ zim4+ zim5+ zim6

>mod <- inla(formula,data=Munich,control.inla=list(h=0.01),
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Figure 13: Munich rent example: semiparametric effect of the floor size (a) and of the year of construction

(b). The posterior mean within 0.025 and 0.975 quantiles is displayed. The solid line is the result of the CCD

integration scheme and the dotted line is the result of the grid integration scheme.

control.data=list(initial=-1))

48



3.10 Geoadditive model: Zambia children undernutrition

The second example of geoadditive model with several covariates is from Kandala et al. (2001) and is one of

the worked out examples in the BayesX web page.

Example 10 - Undernutrition of children in Zambia. Undernutrition in children is measured determining

the anthropometric status of the child relative to a reference standard. In our example undernutrition is

measured by stunting, or inefficiency height for age, indicating chronic undernutrition. Stunting for a child i
is determined using a Z score defined as

Zi =
AIi −MAI

σ

whereAI refers to the child’s anthropometric indicator,MAI refers to the median of the reference population

and σ refers to the deviation of the standard population.

The main interest is on modelling the dependence of undernutrition on a set of covariates including the age of

the child (agei), the body mass index of the child’s mother (bmii), the district the child lives in (si) and some

further categorical covariates. The data set consists in nd = 4846 observations. For more details about the

data set see Kandala et al. (2001) and Kneib et al. (2004).

We assume the scores Zi to be conditionally independent Gaussian random variables

Zi|ηi ∼ N (ηi, 1/λy)

and

ηi = µ+ f0(bmii) + f1(agci) + fs(si) + fu(si) + zT
i β

where f0(·) and f1(·) are the semi parametric effect of the mother’s body mass index and the age of the child

respectively. fs(·) is the structured spatial effect of the district, fu(·) is an unstructured spatial effect and

zi are a set of categorical covariates. We model the spatial structured effect fs(si) as the intrinsic GMRF in

equation (15) and f0(·) and f1(·) as RW2. The unstructured spatial effect fu(si) is modelled by i.i.d. Gaussian

random variables. We impose a sum-to-zero constraint for fs(·), f0(·) and f1(·).
In this model there are five hyperparameters θ = (log λy, log λs, log λu, log λ0, log λ1) and we assign a vague

LogGamma prior distribution to each of them.

1 [ Zambia model ]

2 t y p e = problem

3 d i r = r e s u l t s −%d

4

5 [ P r e d i c t o r term ]

6 t y p e = p r e d i c t o r

7 n = 4846

8 p r i o r = loggamma

9 p a r a m e t e r s = 1 . 0 0 .005

10 i n i t i a l = 10

11 f i x e d = 1

12

13 [ Data ]

14 t y p e = da ta

15 l i k e l i h o o d = g a u s s i a n

16 f i l e n a m e = zambia . d a t

17 p a r a m e t e r s = 1 0 .005

18 i n i t i a l = 0 . 2

19
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20 [ s p a t i a l ]

21 t y p e = f f i e l d

22 model = besag

23 graph = zambia . gra

24 c o v a r i a t e s = s p a t i a l c o v a r i a t e . d a t

25 d i a g o n a l = 0 .00001

26 c o n s t r a i n t = 1

27 i n i t i a l = 3 . 6

28 p a r a m e t e r s = 1 0 .005

29

30 [ s p a t i a l p r e d i c t o r ]

31 t y p e = f f i e l d

32 model = i i d

33 c o v a r i a t e s = s p a t i a l c o v a r i a t e . d a t

34 n =57

35 d i a g o n a l = 0 .00001

36 i n i t i a l = 5 . 4

37 p a r a m e t e r s = 1 0 .005

38

39 [ agc ]

40 t y p e = f f i e l d

41 model = rw2

42 c o v a r i a t e s = agc . d a t

43 n=60

44 d i a g o n a l = 0 .0001

45 c o n s t r a i n t = 1

46 i n i t i a l = 6 . 6

47 p a r a m e t e r s = 1 0 .005

48 q u a n t i l e s = 0 .025 0 .975

49

50 [ bmi ]

51 t y p e = f f i e l d

52 model = rw2

53 c o v a r i a t e s = bmi c o v a r i a t e . d a t

54 l o c a t i o n s = bmi . l o c a t i o n

55 d i a g o n a l = 0 .00001

56 c o n s t r a i n t = 1

57 i n i t i a l = 6 . 2

58 p a r a m e t e r s = 1 0 .005

59 q u a n t i l e s = 0 .025 0 .975

60

61 [ b e t a ]

62 t y p e= l i n e a r

63

64 [ rcw ]

65 t y p e= l i n e a r

66 c o v a r i a t e s = rcw . d a t

67

68 [ edu1 ]

69 t y p e= l i n e a r

70 c o v a r i a t e s = edu1 . d a t

71

72 [ edu2 ]

73 t y p e= l i n e a r

74 c o v a r i a t e s = edu2 . d a t

75

76 [ s e x ]
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77 t y p e= l i n e a r

78 c o v a r i a t e s = s e x . d a t

79

80 [ t p r ]

81 t y p e= l i n e a r

82 c o v a r i a t e s = t p r . d a t

83

84 [ INLA param ]

85 t y p e = INLA

86 i n t s t r a t e g y = CCD;

Also in this example we use the CCD integration scheme to compute the integral in (21).
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Figure 14: Results for the Zambia example. Panel (a) and (b) displays the posterior mean of predictor η and

of structured spatial effect respectively. Panel (c) and (d) display the posterior mean, within 0.025 and 0.975

quantiles, of the age effect (c) and of the mother’s body mass index (d)

In Figure 14, panels (a) and (b), the posterior mean of the predictor and of the structured spatial effect is

displayed. The effect of the age of the children is in Figure 14, panel (c). It shows a clear non linear pattern.

The effect of the mother’s body mass index (Figure 14, panel (d)) instead is more regular and could probably

be substitute in the model formulation by a linear effect.

The computation time is about 4 minutes on Machine 1 and 1 minute on Machine 2.
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3.11 Log-Gaussian Cox processes

The particular feature of our next example is that data are registered on a regular grid of dimension nrow×ncol,

where nrow is the number of row and ncol the number of columns. Unlike all the previous examples then,

each data is identified by two indexes (irow, jcol) indicating respectively the row and column the data point

belongs to. However, as inla only understand one-dimensional indices, we have to map the coordinates into

a one-dimensional index k
k = jcol + irow × ncol

for i = irow = 0, . . . , nrow −1 and j = jcol = 0, . . . , ncol −1. This following example is taken from Rue et al.

(2007).

Example 11 Log-Gaussian Cox processes (LGCP) are a class of models used for modelling spatial point

processes, see for example Møller and Waagepetersen (2003). A LGCP is a Poisson point process. Y ∈W ⊂
Rd. with random intensity function λ(ξ) = exp(Z(ξ)), where Z(ξ) is a Gaussian field and ξ ∈ W . It is

common practice to discretise the observation windows W into N = nrow ×ncol disjoint cells {sij}with area

|sij | where i = 0, . . . , nrow − 1 and j = 0, . . . , ncol − 1.

Let yij be the observed number of occurrences of the realised point pattern within sij . Let ηij be the random

variable Z(ξij). The likelihood of the model is

yij |ηij ∼ Po(|sij | exp(ηij))

while, as usual the latent variable vector η is part of a larger GMRF.

In this example, the data consist in the locations of a particular tropical tree species ( Beilschmiedia pendula

Lauraceae) registered in a 50-hectares plot in the tropical moist forest of Barro Colorado Island in central

Panama. For more information about this study see Waagepetersen (2006). The 3605 tree locations are plotted

in Figure 6, panel (a). We divide our region of interest into a 201× 101 regular grid, where each square pixel

represent an area of 25 squares meters. Together with the data yij , we observe, the mean elevation and the

mean norm of the gradient for each area on the grid. These covariates are believed to influence the behaviour

of the tree under examination. A scaled version of these covariates is displayed in Figure 15, panels (b) and

(c). The model for the latent variable ηij is
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Figure 15: Data and covariate for the LGCP example: panel (a) displays locations for the 3065 trees, panel

(b) displays the altitude and panel (c) the norm of the gradient.

ηij = µ+ β1altij + β2gradij + fs(sij) + uij

where altij and gradij are the values for the two covariates at location (i, j), fs is the spatial structured effect

of the location and uij is the unstructured random effect.

For the spatial structured term f s we use a second order polynomial intrinsic GMRF with unknown precision

λf . See Rue and Held (2005, Sec 3.4.2) for a thorough definition of intrinsic GMRF models on a lattice. We
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use vague Gaussian priors for µ, β1 and β2. The unstructured terms uij are independent N (0, 1/λu) random

variables. Notice that the latent field x = (η,f s, µ, β1, β2) in this example has dimension 40 605.

The hyperparameters are θ = (log λf , log λu) are are assigned vague LogGamma priors.

1 [ T r o p i c a l r a i n f o r e s t da ta ]

2 t y p e = problem

3 d i r = r e s u l t s −%d

4

5 [ P o i s s o n da ta ]

6 t y p e = da ta

7 l i k e l i h o o d = p o i s s o n

8 f i l e n a m e = data− f u l l . d a t

9

10 [ P r e d i c t o r term ]

11 t y p e = p r e d i c t o r

12 n = 20301

13 i n i t i a l = 1

14

15 [ S p a t i a l smoo ther ]

16 t y p e = f f i e l d

17 c o v a r i a t e s = s p a t i a l − f u l l . d a t

18 nrow=101

19 n c o l =201

20 model = rw2d

21 c o n s t r a i n t =1

22 i n i t i a l =1

23

24 [ C o n s t a n t ]

25 t y p e = l i n e a r

26

27 [ A l t i t u d e C o v a r i a t e ]

28 t y p e = l i n e a r

29 c o v a r i a t e s = a l t i t u d e − f u l l . d a t

30

31 [ G r a d i e n t C o v a r i a t e ]

32 t y p e = l i n e a r

33 c o v a r i a t e s = g r a d i e n t − f u l l . d a t

34

35 [ INLA p a r a m e t e r s ]

36 t y p e = INLA

37 s t r a t e g y = GAUSSIAN

The data file data−full . dat has the following format

k |sk| yk

where k = j + i× ncol, i = 0, . . . , nrow − 1 is the row index and j = 0, . . . , ncol − 1 is the column index.

Notice also that it is required for the user to specify the number of rows and columns in the data set (18− 19).

For grid observed data, the fields nrow and ncol are substituted by n which we have used in all previous

examples. (In this example n = 20301 = 101 × 201.)

The results are displayed in Figure 16. Panel (a) shows the posterior mean of the structured spatial effect.
Following is the R code used to produce Figure 16(a):

> library(fields)
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Figure 16: LGCP example: (a) posterior mean of the spatial effect fs(·), (b)-(d) posterior marginals for µ, β1

and β2

> xcoord=5*seq(0,200)

> ycoord=5*seq(0,100)

> space=read.table("results-linear0/spatial-smoother/summary.dat")

> image.plot(xcoord,ycoord,matrix(space[,3],ncol=101,byrow=F),

col=gray(seq(0,1,len=1000)))

Panels (b)-(d) show the posterior marginal distributions for the parameters µ, β1 and β2.

The graph of the full model for this example contains 40605 nodes, this makes the computation procedures

heavier that for all other examples considered here. The computational time required to solve the model grows

then to about 50 minutes on Machine 2. We have not run the model on Machine 1.
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3.12 A longitudinal study example - Forest health data

Our last example is a longitudinal study on forest health. The aim of the study if to identify potential factors

influencing the health status of the trees. In addition to covariates characterising a tree and its stand, spatial

and temporal information are also available. The example is taken from Kneib and Fahrmeir (2008), an earlier

version of the data set is analysed in Kneib and Fahrmeir (2006).

Example 12 The data have been collected annually in a visual forest health inventories between 1983 and

2004 in a northern Bavarian district. There are 83 observations plots within an area of around 15 squared

kilometres.

Every year, in some of the 83 observations plots the health status of the tree yit, i = 0, . . . , 83, t = 0, . . . , 21,

is registered. Not all plots are observed every year, so the data set has in total nd = 1796 observations. In the

original data set there are 9 categories for tree health, anyway, here we consider only two: healthy or non-

healthy. Together with the tree health status, several covariates are registered year after year at the different

observation plot. All covariates are summarised in Table 2. Moreover the location of each registration plot si

Covariate Description

Age age of the stand in years (continuous between 7 and 234 years)

elevation elevation above the sea level (continuous, between 250 and 480 meters)

inclination inclination of the terrain in percent (continuous between 0 and 1)

soil depth of soil level (continuous, between 9 and 51 cm)

ph ph-value in 0-2cm depth (continuous, between 3.28 and 5.05)

canopy density of forest canopy in percent (continuous, between 0 and 1)

stand type of stand (categorical, 3 categories)

fertilisation fertilisation (categorical: yes or no)

humus thickness of humus (categorical, 5 categories)

moisture level of moisture (categorical, 3 categories)

saturation base saturation (ordinal)

Table 2: Forest health data: description of covariates.

is known. The spatial distribution of the locations is displayed in Figure 17.
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Figure 17: Forest health example: location of the 83 observation plots.

The likelihood of the data is binomial:

yit|ηit ∼ Bin(pit)
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with logit link

pit =
exp(ηit)

1 + exp(ηit)
i = 0, . . . , 82, t = 0, . . . , 21.

Following Kneib and Fahrmeir (2008) we model the latent variables as:

ηit = µ+ f0(ageit) + f1(inclinationi) + f2(canopyit) + ftime(t) + fs(si) + fu(si) + zT
itβ (22)

where f0(·), f1(·), f2(·) are the semiparametric effect of age of the tree, inclination and canopy of the location

respectively, while ftime(·) is the non parametric effect of time. Each semiparametric function is modelled as

a RW2 with unknown precision parameter. The vector zT
it includes all covariates in Table 3 not mentioned

before which are assumed to have a linear effect. Finally fs(·) and fu(·) indicate the structured spatial effect

and the unstructured one.

We models the spatial structured effect as the intrinsic GMRF in equation (15). We build the graph for such

a model by considering two observation plots as neighbours if their distance is less than 1200 meters. The

spatial unstructured effect is modelled as a series of uncorrelated Gaussian random variable.

We can cast the model in (22) in the general formulation in equation (2) by defining a new index r = (i, t),
r = 0, . . . , nd − 1, and rewriting the model as

ηr = µ+ f0(ager) + f1(inclinationr) + f2(canopyr) + ftime(r) + fs(sr) + fu(sr) + zT
r β (23)

The above model has six precision hyperparameters θ = (log λ0, log λ1, log λ2, log λtime, log λs, log λu), each

is given a vague LogGamma prior.

We report part of the ini file which defines the model. We have omitted the definition of almost all covariates

with linear effect.

1 [ F o r e s t damage ]

2 t y p e=problem

3 d i r= r e s u l t s −%d

4

5 [ p r e d i c t o r term ]

6 t y p e= p r e d i c t o r

7 n=1796

8 i n i t i a l = 10

9 f i x e d =1

10

11 [ Data ]

12 t y p e=da ta

13 l i k e l i h o o d =b i n o m i a l

14 f i l e n a m e=damage . d a t

15

16 [ s p a t i a l ]

17 t y p e= f f i e l d

18 model=besag

19 graph= f o r e s t . gra

20 c o v a r i a t e s = s p a t i a l . c o v a r i a t e

21 d i a g o n a l = 0 .00001

22 c o n s t r a i n t = 1

23 i n i t i a l = −3.346165

24 p a r a m e t e r s = 1 0 .001

25

26 [ s p a t i a l −u n s t r u c t ]

27 t y p e= f f i e l d

28 model= i i d
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29 n=83

30 c o v a r i a t e s = s p a t i a l . c o v a r i a t e

31 d i a g o n a l = 0 .00001

32 c o n s t r a i n t = 1

33 i n i t i a l = 7 .324791

34 p a r a m e t e r s = 1 1

35

36 [ age ]

37 t y p e = f f i e l d

38 model = rw2

39 c o v a r i a t e s = age . c o v a r i a t e

40 l o c a t i o n s =age . l o c a t i o n

41 d i a g o n a l = 0 .0001

42 c o n s t r a i n t = 1

43 i n i t i a l = 5 .674807

44 p a r a m e t e r s = 1 0 .001

45 q u a n t i l e s = 0 .025 0 .975

46

47 [ canopy ]

48 t y p e = f f i e l d

49 model = rw2

50 c o v a r i a t e s = canopy . c o v a r i a t e

51 l o c a t i o n s =canopy . l o c a t i o n

52 d i a g o n a l = 0 .0001

53 c o n s t r a i n t = 1

54 i n i t i a l = 13 .763045

55 p a r a m e t e r s = 1 0 .001

56 q u a n t i l e s = 0 .025 0 .975

57

58 [ i n c l i n a t i o n ]

59 t y p e = f f i e l d

60 model = rw2

61 c o v a r i a t e s = i n c l i n a t i o n . c o v a r i a t e

62 n=47

63 d i a g o n a l = 0 .0001

64 c o n s t r a i n t = 1

65 i n i t i a l = 6 .422709

66 p a r a m e t e r s = 1 0 .001

67 q u a n t i l e s = 0 .025 0 .975

68

69 [ t i m e ]

70 t y p e = f f i e l d

71 model = rw2

72 c o v a r i a t e s = y ear . c o v a r i a t e

73 l o c a t i o n s =y e ar . l o c a t i o n

74 d i a g o n a l = 0 .0001

75 c o n s t r a i n t = 1

76 i n i t i a l = 1 .211905

77 p a r a m e t e r s = 1 0 .001

78 q u a n t i l e s = 0 .025 0 .975

79

80 [ common mean ]

81 t y p e= l i n e a r

82

83 [ s o i l ]

84 t y p e = l i n e a r

85 c o v a r i a t e s = s o i l . cov
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86 .

87 .

88 .

89 [ INLA p a r a m e t e r s ]

90 t y p e = INLA

91 i n t s t r a t e g y = CCD;

92 h = 1 . 0 e−2;

Notice that when using the inla program we treat all covariates, including space and time in the same way.

All covariates files have the same structure.

Again we use the CCD strategy in order to integrate out the uncertainty about the hyperparameters θ. Given

the high dimension of the hyperparameters space, the CCD strategy gives a much lower computation time if

compared to the grid strategy. We have compared the results coming from the two integration strategies and

the differences are irrelevant.

In Figure 18 the results about the semiparametric effects are displayed. The posterior mean is plotted within

0.025 and 0.975 posterior quantiles. The results agree very well with those found by Kneib and Fahrmeir

(2008).
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Figure 18: Results for the forest health example, semiparametric effect of covariates, posterior mean within

0.025 and 0.975 quantiles: age of the tree, panel (a), canopy, panel (b), inclination panel (c) and time panel

(d).

The model runs in around 9 minutes on Machine 1 and around 4 minutes on Machine 2. Much of the time is

used by the optimiser to find the maximum of π̃(θ|y) and to compute the Hessian at the modal configuration.

When the hyperparameter space is high dimensional it is possible that the optimiser fails to succeed at a first

attempt. The problem is usually solved by running the inla program again starting from different initial

values for the hyperparameters. It is, usually, a good idea to start from the best configuration found during the

previous run.
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If one is interested in spatial prediction of tree health outside the observation plots, the spatial model in (15)

is not very useful. We could instead use a second order random walk defined on a regular grid (Rue and Held,

2005, Sec 3.4.2) built as following. We divide the region of interest in nrow × ncol cells, with nrow = 50 and

ncol = 100. We then build a new covariate file, spatial −covariate−rw2.dat, where, to each data point yr are

assigned two indexes nr
row and nr

col indicating its the location of the data on the nrow × ncol grid.

The code for the ini file substituting section [ spatial ] (lines 16-24) and [ spatial −unstruct] (lines 26-34) is

the following:

1 [ s p a t i a l ]

2 t y p e= f f i e l d

3 model=rw2d

4 c o v a r i a t e s = s p a t i a l −c o v a r i a t e −rw2 . d a t

5 nrow=50

6 n c o l =100

7 c o n s t r a i n t =1

8 p a r a m e t e r s = 1 0 .001

9 i n i t i a l = −1.570568

The new model has one hyperparameter less than the previous one since no spatial unstructured effect is

present, but the number of nodes in the latent field x is increased, therefore running the new model will take

longer time.

The results for the spatial effect in the new model is displayed in Figure 19. The non parametric effects of the

other covariates do not change significantly.
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Figure 19: Posterior mean estimate for the spatial effect modelled as a RW2d

Kneib and Fahrmeir (2008) propose to include in the model for the latent variable an interaction between the

age of the tree and the calendar time, so that the model becomes:

ηit = µ+ f1(inclinationi) + f2(canopyit)

f3(t, ageit) + fs(si) + fu(si) + zT
itβ (24)

where the spatial effect fs(·) is modelled as in (15) and f4(·) is the interaction effect between time and age of

the tree modelled as a RW2d.

We can include the term f4(·) in equation (24) in a similar way as we did earlier in this same example for the

RW2d spatial effect. We just create a new covariate file, year .age−covariate, with the format

r t ager

where both time and age are recorded, and delete from the ini on page 56 section [age] and [time] while

adding the the following lines:

1 [ year−age i n t e r a c t i o n ]
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2 t y p e= f f i e l d

3 model=rw2d

4 c o v a r i a t e s =y ear . age−c o v a r i a t e

5 nrow=22

6 n c o l =223

7 c o n s t r a i n t =1

8 d i a g o n a l = 0 . 0 1

9 p a r a m e t e r s = 1 0 . 0 1

10 i n i t i a l = 2 .025712

The new model has 5 hyperparameters and the total number of nodes in the latent field is 6939. We run the

model on Machine 2 and the computation time was around 30 minutes using a CCD integration strategy.

The posterior mean and standard deviation of the interaction effect are displayed in Figure 20, panel (a) and

(b) respectively.
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Figure 20: Interaction effect between age of the tree and calendar time in Model (24). Panel (a) posterior

mean, panel (b) posterior standard deviation.
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3.13 Survival analysis - Weibull Model

[[[ This survival–section needs a rewrite due to a change in the input format!!! These examples are no longer

valid. ]]]

Survival data are often right censured, meaning that the exact survival time is known only for a fraction of the

individuals under study, the remainder of the survival times are known only to have exceeded a certain value.

Suppose that there are n individuals under study and that associated with the ith individual is a survival time ti
and a fixed censuring time ci. The ti’s are supposed to be independent and identically distributed with density

f(t) and survival function S(t). The exact survival time is known only if ti < ci. The data in this framework

will then be represented by the n pairs of random variables (yi, νi) where:

yi = min(ti, ci)

and

νi =

{
1 if ti ≤ ci
0 if ti > ci

is the event indicator variable.

In this example we use simulated data.

Example 13 We observe a series of n survival times with associated the corresponding event indicator

{(y1, ν1), . . . , (yn, νn)}. Moreover for each of the n individuals we observe a covariate x. The survival

times are assumed to be iid and follow a Weibull distribution:

yi ∼ Weibull(α, γi)

We model the effect of covariate by letting λi be a function of the observed covariate

log γi = ηi = µ+ β + xi

µ and β are assigned Gaussian priors with known precision. To complete the model we assume a Gamma

prior for the parameter α
α ∼ Gamma(a, b)

The corresponding ini file is the following:

1 [ Problem ]

2 t y p e = problem

3 d i r = r e s u l t s −%1d

4 h y p e r p a r a m e t e r s = 1

5

6 [ P r e d i c t o r ]

7 t y p e = p r e d i c t o r

8 n = 100

9 i n i t i a l = 10

10 f i x e d = 1

11

12 [ Data ]

13 t y p e = da ta

14 l i k e l i h o o d = w e i b u l l

15 f i l e n a m e = w e i b u l l −da ta . d a t

16

17 [ Mean ]

18 t y p e = l i n e a r

19
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20 [ L i n e a r ]

21 t y p e = l i n e a r

22 c o v a r i a t e s = w e i b u l l −c o v a r i a t e s . d a t

23

24 [ INLA p a r a m e t e r s ]

25 t y p e = INLA

The data file for the survival models has the following format

i ci yi

The rest of the model specification is similar to all previous examples.

3.13.1 Implementing using the INLA package for R

>data(SurvSim)

>mm=surv.inla(y∼x,data=SurvSim,event=cens,family="weibull")
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3.14 Survival analysis - Weibull model with log-normal frailties

[[[ This parts needs a rewrite as the R-interface has changed. ]]]

In studies if survival, the hazard function for each individual may depend on a set of risk factors or explanatory

variables but usually not all such variables are known or measurable. This unknown factor of the hazard

function is often termed as the individual heterogeneity of frailty.

The most common type of frailty model is called the shared-frailty model, which is an extension of Cox

proportional hazard model. Let yij denote the survival time for the jth individual in the ith cluster, i =
1, . . . , n and j = 1, . . . ,mi. Let mi represent the number of cluster in the ith cluster and therefore we have

a total of N =
∑
mi subjects. In the shared frailty model we assume that the conditional hazard function of

yij given the unobserved random frailty wi for the ith cluster and the fixed covariate vector xij is given by:

h(y|wi,xij) = h0(y) wi exp(xT
ijβ) = h0(y) exp(bi + xT

ijβ) (25)

where bi = log(wi), β is a vector of unknown parameters assumed to have a Gaussian prior, xij is the

observed covariate vector for the jth individual in the ith cluster, and h0(·) is an unknown baseline hazard

function.

We assume the vector b = {b1, b2, . . . } to be i.i.d Gaussian with unknown precision κ which, as usual is given

a Gamma prior. The frailty is simply a random effect of the model like those seen in the previous examples

Example 14 We want to study the times of infection from the time of insertion of catheter on 38 kidney patients

using portable dialisis equipment (McGilchrist and Aisbett, 1991). For each patient the time for the first and

second infection is reported, each time can be either an event (infection) or censured (no infection until that

time). The covariates taken into account are the sex of the patient, the age at the time the infection has taken

place and the type of disease (4 possible types). The last covariate is qualitative and therefore it is coded using

3 dummy variables. The covariate vector is therefore (ageij , sexi, diseasei1, diseasei2, diseasei3), for ease of

exposition we label these covariates as (xij1, xij2, xij3, xij4, xij5). Moreover we assume a Weibull model for

the unknown baseline hazard h0(·). The model is thus given by:

yij ∼ W(α, γij)

where i = 1, . . . , 38 and j = 1, 2. And

ηij = log(γij) = β0 + β1xij1 + β2xij2 + β3xij3 + β4xij4 + β5xij5 + bi

where bi ∼ N (0, κ−1). Following Spiegelhalter et al. (1995) we take β ∼ N(0, 105I), κ ∼ Gamma(10−4, 10−4)
and α ∼ Gamma(1, 10−4)

The corresponding ini file is:

1 [ Model ]

2 t y p e = problem

3 q u a n t i l e s = 0 .025 0 .975

4

5 [ Data ]

6 t y p e = da ta

7 l i k e l i h o o d = w e i b u l l

8 f i l e n a m e = t i m e . d a t

9 i n i t i a l = 0 . 2

10 p a r a m e t e r s = 1 1e−04

11

12 [ P r e d i c t o r ]
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13 t y p e = p r e d i c t o r

14 n = 76

15 f i x e d = 1

16 compute = 1

17 i n i t i a l = 10

18

19 [ I n t e r c e p t ]

20 t y p e = l i n e a r

21

22 [ age ]

23 t y p e = l i n e a r

24 c o v a r i a t e s = age . d a t

25 p r e c i s i o n = 1e−05

26

27 [ s e x ]

28 t y p e = l i n e a r

29 c o v a r i a t e s = s e x . d a t

30 p r e c i s i o n = 1e−05

31

32 [ d i s 1 ]

33 t y p e = l i n e a r

34 c o v a r i a t e s = d i s 1 . d a t

35 p r e c i s i o n = 1e−05

36

37 [ d i s 2 ]

38 t y p e = l i n e a r

39 c o v a r i a t e s = d i s 2 . d a t

40 p r e c i s i o n = 1e−05

41

42 [ d i s 3 ]

43 t y p e = l i n e a r

44 c o v a r i a t e s = d i s 3 . d a t

45 p r e c i s i o n = 1e−05

46

47 [ f r a i l t y ]

48 t y p e = f f i e l d

49 model = i i d

50 c o v a r i a t e s = f r a i l t y −cov . d a t

51 d i a g o n a l = 1 . 0 e−6

52 l o c a t i o n s = f r a i l t y −l o c . d a t

53 p a r a m e t e r s = 1e−04 1e−04

3.14.1 Implementing using the INLA package for R

>data(Kindey)

>formula = time∼age+sex+dis1+dis2+dis3+f(ID,param=c(10ˆ(-4),10ˆ(-4)))
>

>model=surv.inla(formula,family="weibull",event=event,data=Kidney,

control.fixed=list(prec=10ˆ(-5)),

control.data=list(initial=0.2,param=c(1,10ˆ(-4))))
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3.15 Survival analysis - Model with piecewise constant hazard

An alternative to choosing a parametric model for h0(·) in equation (25) is to construct a piecewise exponential

model. We first divide the time axis into J pre-specified intervals Ik = (sk−1, sk] for k = 1, 2, . . . , J where

0 = s0 < s1 < · · · < sJ < ∞, sJ being the last survival or censured time and assume the baseline hazard to

be constant with each interval. That is:

h0(y) = λk, for y ∈ Ik.

Following Gamermann (1991) we model εk = log(λk) as a random walk of first or second order with unknown

precision.

The model for the hazard function for yij given the unobserved random frailty wi for the ith cluster and the

fixed covariate vector xij is given by:

h(yij |wixij) = exp(bi + xT
ijβ)

(
J∑

k=1

λk1yij∈Ik

)

where 1yij∈Ik
indicates if yij belongs to interval Ik. Moreover, as in the previous example xij are observed

covariate, β are unknown parameters with a Gaussian prior and bi’s are the log frailty effect assumed to be

i.i.d. and Gaussian distributed.

It turns out that such piecewise constant hazard models can be written as models with Poisson likelihood

where the log mean is a linear function of all covariates and random effects, included the piecewise constant

baseline hazard.

Example 15 We consider again the Kindey infection data set seen in example 14 this time assuming a piece-

wise constant baseline hazard with a random walk prior for log(λk), with precision τ = 10−4. We consider

this time only sex and age as covariates so that the proportional hazard’s component is

exp(xT
ijβ) = exp{βsexsexi + βageageij}

We assume κ ∼ Gamma(0.001, 0.001) and β N (0, 10−3). Moreover,we choose J = 10

The R code to implement the above model using the INLA library is the following:

>data(Kidney)

>formula = time∼age+sex+f(ID,param=c(0.001,0.001),initial=0.6)
>

>Model=surv.inla(formula,family="piecewise.constant",n.intervals=10,

data=Kidney,event=event,

control.fixed=list(param=c(0,10ˆ(-3))),

control.hazard=list(initial=log(10ˆ(-4)),fixed=1))
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4 The GENERIC1-model

The GENERIC1 model implements the following precision matrix

Q = τ(I − β

λmax
C)

where the C-matrix is specified in the argument Cmatrix = <filename>, using the

i j Cij

format (as for the GENERIC0 model). λmax is the maximum eigenvalue for matrix C, which allow β to be in

the range β ∈ [0, 1). The hyperparameters are θ = (τ, β) and the internal representations are

τ = exp(τintern)

and

β =
exp(βintern

1 + exp(βintern)

5 The RW2DX3-model

This is a specialised model for a certain application, for which the linear predictor require three different con-

tributions from the RW2D model. Similar to the “2diidwishartpart0/1” and “3diidwishartpart0/1/2” models,

this is also defined similarly.

Let z0 be a RW2D model with precision κ, then define z1 and z2 conditionally on z0, as

z1 | z0 ∼ N (β1z0, κ1I)

and

z2 | z0 ∼ N (β2z0, κ2I).

The joint density π(z0, z1,z2 | κ, κ1, κ2, β1, β2) is then proportional to

exp

(
−1

2
zT

0 Q(κ)z0 −
κ1

2
(z1 − β1z0)

T (z1 − β1z0) −
κ2

2
(z2 − β2z0)

T (z2 − β2z0)

)

where Q(κ) is the precision matrix for the RW2D model.

The models components are named as rw2dx3part0 for z0, rw2dx3part1 for z1 and rw2dx3part2

for z2. The hyperparameters are

θ = (κ, κ1, κ2, β1, β2).

6 Zero-inflated likelihood-models

inla support two types of zero-inflated models; type 0 and type 1. These are defined for both the Binomial

and the Poisson likelihood. For simplicity we will describe only the Poisson as the Binomial case is similar.
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6.1 Type 0

The (type 0) likelihood is defined as

Prob(y | . . .) = p× 1[y=0] + (1 − p) × Poisson(y | y > 0)

where p is a hyperparameter where

p =
exp(pintern)

1 + exp(pintern)

and pintern is the internal representation of p; meaning that the initial value and prior is given for pintern. This

is model is called

zeroinflatedpoisson0 and zeroinflatedbinomial0

6.2 Type 1

The (type 1) likelihood is defined as

Prob(y | . . .) = p× 1[y=0] + (1 − p) × Poisson(y)

where p is a hyperparameter where

p =
exp(pintern)

1 + exp(pintern)

and pintern is the internal representation of p; meaning that the initial value and prior is given for pintern. This

is model is called

zeroinflatedpoisson1 and zeroinflatedbinomial1
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7 Negative Binomial

For negative Binomial responces, the likelihood is

Prob(y) =
Γ(y + n)

Γ(n)Γ(y + 1)
pn(1 − p)y

for y = 0, 1, 2, . . .. Note that n > 0 does not need to be an integer.

The mean of the negative Binomial is expressed as

µ = E exp(η)

where η is the linear predictor and the hyperparameter n (or the “size”) plays the role as an overdispersion

parameter. The internal representation is

n = exp(θ).

The mean and variance of y are given as

µ = n
1 − p

p
and σ2 = µ+ µ2/n.

As n→ ∞, we get back to the Poission distribution. The negative Binomial model is specified with the same

data-format as for the Poisson case, but with the name nbinomial and the overdispersion hyperparameter

θ.
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8 Quantile-regression and the asymmetric Laplace-distribution

A likelihood models of the following type

π(y|η) ∝ exp (−τρα(y − η))

where

ρα(x) =

{
α|x| if x ≥ 0

(1 − α)|x| if x < 0

is both used for Laplace-distributed observations, but can also be justified from a quantile-regression point of

view.

The Laplace distribution is algorithmically awkward, as the second order derivative of log π(y|η) is zero

(except at y = η) but log π(y|η) still has an “overall curvature”. We chose to approximate the Laplace

distribution using

ρ̃α,γ(x) =

{
log(cosh(αγ|x|))/γ if x ≥ 0

log(cosh((1 − α)γ|x|))/γ if x < 0

which has second order derivatives everywhere. The parameter γ > 0 is fixed, and the approximation tends to

|x| as γ → ∞; see Figure 8. Additionally, there is an optional quadratic term that, “hopefully”, might stabilise
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Figure 21: The function |x| and the approximation log(cosh(γx))/γ for γ = 1/2, 1 and 2. The approximation

improves for increasing γ.

the optimisation algorithms,

ρ̃α,γ,ε(x) =

{
log(cosh(αγ|x|))/γ + 1

2ε(αx)
2 if x ≥ 0

log(cosh((1 − α)γ|x|))/γ + 1
2ε((1 − α)x)2 if x < 0

Both α and ε are constants, and α = 0.5, γ = 1 and ε = 0.01 by default. The inverse-scale τ is stochastic by

default.
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The data format is as for the Gaussian likelihood with a weight term w for τ , so for the ith observation, then

τi = wiτ . The parameters α, ε are specified as

likelihood = laplace

filename = $DATADIR/file5a4cf06c

alpha = 0.5

epsilon = 0.1

gamma = 1.0

fixed = 0

initial = 0

which also state that τ is stochastic with initial value exp(0).

From within R, then the parameters α and ε is specified in the control.data argument as

..., control.data= list(alpha = 0.5, epsilon = 0.01, gamma = 1.0),

...

and the family-name is laplace.

9 Model assessment and model choice

For the material in this section refer to the revised version of Rue et al. (2007)

9.1 Marginal Likelihood

The marginal likelihood for a certain model M, defined as

π(y|M) =

∫
π(y,x,θ|M) dx dθ

can be used as a basis for model comparison. The Bayes factor for two competing models is in fact defined as

B(i, j) =
π(Mi|y)π(Mi)

π(Mj |y)π(Mj)
(26)

If we choose the models to be apriori equal probable,π(M1) = · · · = π(MK), then the Bayes factor reduces

to

B(i, j) =
π(y|Mi)

π(y|Mj)

Hence, we can compare models by comparing their marginal likelihood π(y|Mk).

NB: For (26) to be well defined it is necessary for the prior of the latent field π(x|θ) to be proper. For

intrinsic models, in fact, there is an arbitrary missing constant which cannot be determined, see for example

Gelfand (1996).

Using the INLA approach, the marginal likelihood for a certain model M, π(y|M) can be computed as the

normalising constant of π̃(θ|y) using two different approaches:

1. Via numerical integration of π̃(θ|y)

2. Assuming a Gaussian approximation to π̃(θ|y)
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see Rue et al. (2007, Revised version) for details. Using the inla program it is enough to set the mlik flag in

the section type=problem to 1 for the marginal likelihood to be computed. The first approximation (which

is more accurate) is computed only if in the type = INLA section, int_strategy = CCD is selected.

Example 16 We want to check which one, between a Gaussian and a Student-t error is more appropriate to

describe the dollar-pound exchange rate data set in Example 3.

It is enough to add to the first section of the corresponding ini the line

mlik = 1

The output is stored in the file results/marginal-likelihood/marginal-likelihood.dat which contains both appro-

ximations for the log marginal likelihood of the model, log π̃(y|M).

For the Gaussian error model in (8) we have

l o g mar g ina l−l i k e l i h o o d ( i n t e g r a t i o n ) : −933.258

l o g mar g ina l−l i k e l i h o o d ( G a u s s i a n ) : −933.324

while for the Student-t model in (10) the result is

l o g mar g ina l−l i k e l i h o o d ( i n t e g r a t i o n ) : −934.997

l o g mar g ina l−l i k e l i h o o d ( G a u s s i a n ) : −935.233

In this case the Gaussian error model is preferred.

Note that in the volatility model example we have considered, the prior for the latent model x is an autoregres-

sive model of order one. This is a proper model, therefore the marginal likelihood gives a reasonable tool for

model comparison. If we would have chosen, for example, a RW1 model (or any other intrinsic distribution)

as prior for the latent volatility the marginal likelihood computed would have been meaningless.

9.2 Deviance Information Criterion (DIC)

Deviance information criterion (DIC) is a criterion for comparing complex hierarchical models introduced in

Spiegelhalter et al. (2002) and defined as:

DIC = D̄ + pD (27)

where D̄ is the posterior mean of the deviance of the model and pD is the effective number of parameters in

the model, see Spiegelhalter et al. (2002). Details on how to compute the quantities in equation (27) using the

INLA approach are described in Rue et al. (2007, Revised version).

To compute the DIC using the inla program it is enough to set the flag dic in the section type=problem to 1.

For example, if we want to compute the DIC for the two disease mapping models considered in Section 3.7,

it is enough to add to the first section of the corresponding ini file the line:

9 d i c = 1

The result is printed in the output of the inla program, moreover it is stored in the file:

results/dic/dic.dat

which contains four quantities: the mean of the deviance, the deviance of the mean, the effective number of

parameters and the DIC.

For model (18) in Section 3.7, which assumes a non-linear effect of the covariate, the dic.dat file is the

following:
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mean of t h e d e v i a n c e : 2652 .86

d e v i a n c e o f t h e mean : 2563 .22

e f f e c t i v e number o f p a r a m e t e r s : 89 .6438

d i c : 2742 .51

We can compute the DIC also for model (19), which assumes a linear effect of the covariate, obtaining:

mean of t h e d e v i a n c e : 2655 .87

d e v i a n c e o f t h e mean : 2552 .33

e f f e c t i v e number o f p a r a m e t e r s : 103 .542

d i c : 2759 .42

The difference in DIC values is 16.91 in favour of model (18) which suggests that the effect of the exposure

covariate is better represented by a non linear function.

9.3 Predictive measures

Predictive measures can be used both to validate and to compare models (Gelfand, 1996; Gelman et al., 2004)

and as a device to detect possible outliers or surprising observations (Pettit and Young, 1990). Using inla it

is possible to compute Conditional Predictive Ordinates (CPOs) and Probability Integral Transforms (PIT).

Conditional predictive ordinates (CPOs) are defined as:

CPOi = π(yi|y−i)

where the subscript −i indicates that element i of the vector is removed. CPOs are discussed among others

by Pettit (1990) and Gelfand (1996).

Unusually small or large values of CPOi indicate a surprising observation. Anyway, before being compared,

the CPOs have to be calibrated. One of the possible calibration procedures is to compute the probability

integral transform

PITi = Prob(ynew
i ≤ yi|y−i)

see also Gneiting and Raftery (2007). An unusual large or small value indicates possible outliers. Furthermore,

an histogram of the PITs far from uniform might indicate a questionable model (Czado et al., 2007).

In the inla program to compute CPOs and PITs it is sufficient to add in the type=problem section of the ini

file the line

10 cpo = 1

The results will be stored in the results/cpo/ directory in the two files cpo.dat and pit.dat.

Due to how π̃(xi|y−i,θj) are computed, there may be cases where this computation “fails”1; due to inaccurate

tail behaviour of π̃(xi|y,θj). To monitor the reliability of the CPO and PIT values computed, inla as a

FAILURE variable computed for each i (or yi), and the file failure.dat contains the expected failure (wrt θ)

for each i, where the failure is defined as follows.

• If π̃(xi|y−i,θj) is monotone increasing or decreasing, then failure is set to 1 and then π̃(xi|y−i,θj) is

set to the 0-function. In this case, π̃(xi|y−i,θj) is known to be just wrong.

• If π̃(xi|y−i,θj) is has a (local) maximum either at min{xi} or at max{xi}, then π̃(xi|y−i,θj) is set to

zero in that part where π̃(xi|y−i,θj) is decreasing (starting from min{xi}) or increasing (starting from

max{xi}). The failure is in this case set to 0 (no failure), unless the difference in log-scale between the

maximum and leftmost (or rightmost) value of π̃(xi|y−i,θj) is less than CPO.DIFF (default is 3).

1This is a feature not a bug.
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When the expected failure is 0 then the computed value of CPO and PIT seems to be reliable, and when the

expected failure is 1 then the computed value of CPO and PIT is known to be completely unreliable.

As an example we consider the volatility model with Gaussian observation in Example 3. The corresponding

PIT values are plotted in Figure 22(a). There are three observation whose PIT is close to 0, namely 331, 656

and 862. Figure 22(b) displays the histogram of the PIT values which is reasonably close to uniform.
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Figure 22: PIT values for the volatility model with Gaussian observation in Example 3 (panel (a)) and corre-

sponding histogram (panel (b)).
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A Reference manual for the inla program

A.1 Structure of the ini file

The ini file describes the model and sets some additional parameters to be passed to the GMRFLib library. It is divided

in several sections. Each section starts with a tag written between squared brackets ([tag]) which is simply a user defined

name for the section itself.

Each section contains the field type which determines the role of the section in the problem definition and also the

structure of the section itself. The six different types of section are described in details below.

A.1.1 The type=problem section

This sections specifies some global parameters which are valid for the whole problem. It consists of the following fields:

dir : A string indicating the name of the directory where the results are stored. The directory is created when the inla

program is run. The directory name can include %d

hyperparameters: A Boolean variable indicating whether or not to compute the marginals for the hyperparameters θ

of the model.

Default = 0

summary: A Boolean variable indicating whether or not to output a short summary of the posterior density for all the

nodes in the GMRF x. Currently the summary contains the posterior mean and standard deviation.

Default = 1

density : A Boolean variable indicating whether or not to output the marginal densities for all nodes in the latent GMRF

x.

Default = 1

quantiles : A list of maximum 10 quantiles, p(0), p(1), . . . , to compute for each posterior marginal. The function

returns, for each posterior marginal, the values x(0), x(1), . . . such that

Prob(X < x(p)) = p

Default: Empty

cdf: A list of maximum 10 cdf, x(0), x(1), . . . , to compute for each posterior marginal. The function returns, for each

posterior marginal, the probabilities Prob(X < x(p)).

Default: Empty

smtp: A string indicating which type of solver for sparse matrices should be used. The available choices are:

• GMRFLib SMTP BAND Lapack’s band-solver. This is optimal for band matrices

• GMRFLib SMTP TAUCS The solver in the TAUCS-library. This is generic for all kind of sparse matrices.

Default: GMRFLib SMTP TAUCS

dic: A Boolean variable indicating whether or not to compute the deviance information criterion (DIC) for the model.

Default: 0

cpo: A Boolean variable indicating whether or not to compute the conditional predictive ordinates for the model

Default: 0

mlik A Boolean variable indicating whether or not to compute the marginal likelihood for the model

NB: this quantity is meaningful ONLY if in all the sections type= ffield present in the ini file model=ar1 is

chosen.

Default: 0
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A.1.2 The type=data section

This section specifies the model for the likelihood of the data π(yi|ηi,θ1) in equation (1).

From version 1.403 of inla, it is allowed to have multiple data-sections, so in principle, each observation can have a

different likelihood-type.

The (or each) data-section consists of the following fields:

dir : The name of the sub-directory where the results are stored. Default is to use the section name.

likelihood : A string indicating the name of the required likelihood model. The available choices are listed in Table 3.

prior : Prior distribution for hyperparameter θ1 in one-parameter likelihood models:

likelihood =gaussian, stochvolt or weibull .

If likelihood =gaussian then θ1 = log λy and the corresponding prior is a LogGamma(a, b)2.

If likelihood =stochvolt then θ1 = ν′ (see Table 3) and the corresponding prior is a 0 mean Gaussian distribution

N (0, 1/prec).
If likelihood =weibull then θ1 = log(α) and the corresponding prior is a LogGamma(a, b).

initial : Initial value for hyperparameter θ1 in one-parameter likelihood models:

likelihood =gaussian, stochvolt or weibull .

Initial value for log λy (if likelihood =gaussian) or for ν′ (if likelihood =stochvolt ).

parameters: Parameters for π(θ1) in one-parameter likelihood models:

likelihood =gaussian, stochvolt or weibull .

If likelihood =gaussian or weibull : parameters a and b for the LogGamma prior of the log-precision log λy .

If likelihood =stochvol t : parameter prec for the Gaussian prior of the ν′.

prior0: Prior distribution for the first hyperparameter θ11 in vector θ1 = (θ11, θ12) in two-parameter likelihood models:

likelihood =T or stochvolnig .

If likelihood =T then θ11 = log λy and the corresponding prior is a LogGamma(a, b).
If likelihood =stochvolnig then θ11 = β (see Table 3) and the corresponding prior is a 0 mean Gaussian distri-

bution N (0, 1/prec).

initial0 : Initial value for hyperparameter θ11 in two-parameter likelihood models:

likelihood =T or stochvolnig .

Initial value for log λy (if likelihood =T) or for β (if likelihood =stochvolnig).

parameters0: Parameters for π(θ11) in two-parameter likelihood models:

likelihood =T or stochvolnig .

If likelihood =T: parameters a and b for the LogGamma prior of the log-precision log λy .

If likelihood =stochvolnig: parameter prec for the Gaussian prior of the β.

prior1: Prior distribution for the second hyperparameter θ12 in vector θ1 = (θ11, θ12) in two-parameter likelihood

models:

likelihood =T or stochvolnig .

If likelihood =T then θ12 = ν′ and the corresponding prior is a 0 mean Gaussian distribution N (0, 1/prec).
If likelihood =stochvolnig then θ12 = ψ′ and the corresponding prior is a 0 mean Gaussian distribution N (0, 1/prec).

initial1 : Initial value for hyperparameter θ12 in two-parameter likelihood models:

likelihood =T or stochvolnig .

Initial value for ν′ (if likelihood =T) or for ψ′ (if likelihood =stochvolnig).

2See Appendix B for a definition.
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parameters1: Parameters for π(θ12) in two-parameter likelihood models:

likelihood =T or stochvolnig .

If likelihood =T: parameter prec for the Gaussian prior of ν′.
If likelihood =stochvolnig: parameter prec for the Gaussian prior of ψ′.

fixed : A Boolean variable indicating whether the hyperparameters of the likelihood model are fixed or random.

Default: 0

filename : The name of the file which contains the data for the model. The format of the file depends on the likelihood

model chosen and is indicated in Table 3

Model Distribution Link Parameters Input File

name function θ1 format

gaussian yi ∼ N (µi,
λ−1

y

wi
) µi = ηi θ1 = log λy i wi yi

poisson yi ∼ Po(Eiλi) λi = exp(ηi) - i Ei yi

binomial yi ∼ Bin(ni, pi) pi = exp(ηi)
(1+exp(ηi))

- i ni yi

T yi = xi + 1√
λywi

T xi = ηi θ1 = (log λy, ν
′) i wi yi

T ∼ tν
(∗) ν ′ = log(ν − 2)

stochvol yi ∼ N (0, σ2
i ) σi = exp(ηi/2) - i yi

stochvol t yi = σiT σi = exp(ηi/2) θ1 = ν ′ i yi

T ∼ tν
(∗) ν ′ = log(ν − 2)

stochvolnig yi = σi × T σi = exp(ηi/2) θ1 = (β, ψ′) i yi

T ∼ NIG(β, ψ)(∗∗) ψ′ = log(ψ − 1)

Ditributions for Survival analysis

NB: ci is the indicator for the type of event (1 =failure 0 =censure)

exponential yi ∼ Exp(λ) λi = ηi - i ci yi

weibull yi ∼ Weibull(α, γi)
(∗∗∗) log γi = ηi θ = log(α) i ci yi

(∗) tν is a scaled Student-t distribution, see Appendix B for definition
(∗∗) See Appendix B for definition of a NIG distribution.
(∗∗∗) See Appendix B for definition of the Weibull distribution.

Table 3: The most common likelihood models supported in the inla program; Those who are not described

here are the zeroinflated Poisson/Binomial of type 0/1 in Section 7.

A.1.3 The type=predictor section

This section defines the model for the unstructured term ηi in equation (2). The inla program requires a section of

type=predictor to always be present. It consists of the following fields:

78



Hyperparameter Prior distribution Default param

Log-Precision log λy LogGamma(a, b)(∗) a = 1, b = 0.001

ν ′, ψ′, β N (0, 1/prec) prec = 0.001

(∗)) See Appendix B for definition of a LogGamma distribution.

Table 4: Prior distributions for the hyperparameters in the likelihood models

prior : Name of the prior for the log-precision parameter log λη.

Default: loggamma

parameters: Parameters for the prior for the log-precision λη.

Default: a = 1.0 and b = 0.001 (for the loggamma prior)

fixed : A Boolean variable indicating whether the precision parameter log λη is fixed or random.

Default: 0.

initial : Starting value for log λη

n: Length of the latent variable vector η. Either n, or nrow and ncol are required.

nrow: Number of rows of the latent variable vector η. Either n, or nrow and ncol are required.

ncol: Number of columns of the latent variable vector η. Either n, or nrow and ncol are required.

compute: A Boolean variable indicating whether or not the marginals for vector η have to be computed.

Default: 0

user . scale : A Boolean variable indicating whether or not the marginals for vector INVERSE.LINK(η) should be

computed, where the link-function is defined in the data-section. For example compute the marginals for exp(ηi)
for Poisson data. This option is only used if option compute is 1.

Default: 1

summary:A Boolean variable indicating whether or not to output a short summary of the posterior density for η.

Default: compute

density : A Boolean variable indicating whether or not to output the marginal densities for η.

Default: compute

quantiles : A list of maximum 10 quantiles, p(0), p(1), . . . , to compute for each node in η.

Default: Empty

cdf:A list of maximum 10 cdf, x(0), x(1), . . . , to compute for each node in η.

Default: Empty

offset : The name of the file where the values of an possible offset are stored.

In general the data y depends on η as given in (1), but in some cases there is fixed offset present

yj |ηj ,θ1 ∼ π(yj |(ηj + offsetj),θ1)

ηi =

nf−1∑

k=0

fk(cki) + zT
i β + εi, i = 0, . . . , nη − 1 (28)

and this option gives the opportunity to specify this offset. Let nη be the length of the linear predictor η. Then

the offset file contains values for offseti with i = 0, . . . , nη − 1 in the following way:

0 −1
1 3.2
2 4.9
10 2
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where the first column specifies the index i and the second column the corresponding offset value. Offset values

for non-specified indices are assumed to be 0. If no offset file is specified the offset is assumed to be 0.

A.1.4 The type= ffield type section

A section of type= ffield specifies the model for one of the function f in equation (2). Hence, in a ini file there must

be nf sections of type= ffield . Each type= ffield section consists of the following fields:

dir : The name of the sub-directory where the results are stored. Default is to use the section name.

model: A a string indicating the name of the chosen model. All available choices are listed in Table 5.

n: The size of the model. If not given, it is implicitly given by the remaining arguments.

Default: undefined

replicate : How many times this model should be replicated. This is an expert option.

Default: 1

prior : Name of the prior for the log-precision parameter log λf . At the moment only two priors are implemented, the

LogGamma(a, b) and the minuslogsqrtruncnormal(a) prior. (Not in use if model=ar1.) The MinusLogSqrTruncNormal

prior is derived from requiring σ to be a positive truncated zero-mean Normal with precision a.

Default: loggamma

parameters: Parameters a and b for the LogGamma prior of the log-precision log λf , or the parameter a for the

MinusLogSqrTruncNormal prior. (Not in use if model=ar1.)

Default: a = 1.0 and b = 0.001 for prior=LogGamma, and a = 0.001 for prior=MinusLogSqrTruncNormal.

initial : Starting value for log λf (not in use if model=ar1)

prior0: Name of the prior for the log-precision parameter λf if model=ar1. At the moment only the LogGamma(a, b)
prior is implemented

Default: loggamma

prior1: Name of the prior for the precision parameter κ if model=ar1. At the moment only the Gaussian(0, precκ)
prior is implemented

Default: gaussian

parameters0:Parameters a and b for the LogGamma prior of the precision log λf (only for model=ar1)

Default: a = 1.0 and b = 0.001

parameters1: Parameter precκ for parameter κ (only for model=ar1)

Default: preck = 0.001

initial0 : Starting value for log λf (only for model=ar1)

initial1 : Starting value for κ (only for model=ar1)

rankdef: A number defining the rank deficiency of the model, with sum-to-zero constraint and possible extra-constraints

taken into account.

Default: no default value.

If rankdef is not set, then it is computed by the rankdef of the prior model (for the generic0 model, the default

is zero), plus 1 for the sum-to-zero constraint if the prior model is proper, plus the number of extra constraints.

Oops: This can be wrong, and then the user must define the rankdef explicitly.

fixed : A Boolean variable indicating whether the precision parameter λf is fixed or random.

Default: 0.

fixed0 : A Boolean variable indicating whether the precision parameter λf is fixed or random (only for model=ar1).

Default: 0.

fixed1 : A Boolean variable indicating whether the parameter κ is fixed or random (only for model=ar1).

Default: 0.
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constraint : A Boolean variable indicating whether or not to impose a sum-to-zero constraint
∑
fj = 0

Default: 0.

extraconstraint : A filename containing extra constraints Af = e.

Default: no default value.

Let nc be the number of constraints and n the length of f . The file must then contain nc×n+nc numbers in the

following order: A1,1, A1,2, . . . , A1,n, A2,1, . . . , A2,n, . . ., Anc,1, . . . , Anc,n, e1, . . . , enc.

diagonal: Additional constraint to add on the diagonal

Default: 0.

graph: The name of the file where the graph is stored (only if model=besag)

weights: The name of the file where the weights wki are stored.

n: Length m of vector f . Only if model=rw1,rw2,crw2 and no locations is specified.

locations : The name of the file where the value of the covariate are stored, only if model=rw1,rw2 or crw2. If no file

is specified the covariate are assumed to take values in {0, 1, . . . ,m− 1}.

cyclic : A Boolean variable specifying whether the model is cyclical, only if model=rw1,rw2 and no locations is

specified.

compute: A Boolean variable indicating whether or not the marginals for vector f have to be computed.

Default: 1

summary:A Boolean variable indicating whether or not to output a short summary of the posterior density for f .

Default: compute

density : A Boolean variable indicating whether or not to output the marginal densities for f .

Default: compute

quantiles : A list of maximum 10 quantiles, p(0), p(1), . . . , to compute for each node in f .

Default: Empty

cdf:A list of maximum 10 cdf, x(0), x(1), . . . , to compute for each node in f .

Default: Empty

A.1.5 The type=linear section

A section of type=linear specifies the model for one of the element βk of vector β = (β0, . . . , βnβ−1) in equation (2).

Hence a ini file will contain nβ sections of type=linear. Each section consists of the following fields:

dir : The name of the sub-directory where the results are stored. Default is to use the section name.

covariates : Name of the file where covariate are stored. If empty, then all covariates are assumed to be 1.

mean: Fixed mean for the Gaussian prior distribution of β.

Default: 0

precision : Fixed precision for the Gaussian prior distribution of β.

Default: 0.001

compute: A Boolean variable indicating whether or not the marginal for βk has to be computed.

Default: 1

summary:A Boolean variable indicating whether or not to output a short summary of the posterior density for βk.

Default: compute

density : A Boolean variable indicating whether or not to output the marginal densities for βk.

Default: compute

quantiles : A list of maximum 10 quantiles, p(0), p(1), . . . , to compute for each node in βk.

Default: Empty

cdf:A list of maximum 10 cdf, x(0), x(1), . . . , to compute for each node in βk.

Default: Empty
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A.1.6 The type=INLA section

This section is optional, it specifies parameters to be passed to the GMRFLib library. It is possible to specify here all pa-

rameters in the GMRFLib ai param tp structure. We describe here the most used and useful ones, for more details see the

on-line documentation for the GMRFLib library: http://www.math.ntnu.no/∼hrue/GMRFLib/doc/html/

strategy : The strategy used to compute approximations to the posterior marginals π(xi|y,θ). The three main choice

are:

• GMRFLib AI STRATEGY GAUSSIAN: computes the Gaussian approximation

• GMRFLib AI STRATEGY MEANSKEWCORRECTED GAUSSIAN: computes the simplified Laplace ap-

proximation.

• GMRFLib AI STRATEGY FIT SCGAUSSIAN: Computes the full Laplace approximation fitting a spline-

corrected Gaussian.

The three approximation types are described in Rue et al. (2007).

Default: GMRFLib AI STRATEGY MEANSKEWCORRECTED GAUSSIAN

int strategy : The strategy used to integrate out the hyperparameters θ when computing π̃(xi|y). There are two

possible choices:

• GMRFLib AI INT STRATEGY GRID (or grid) : Use a grid strategy, slower and somehow more accurate.

• GMRFLib AI INT STRATEGY CCD (or ccd) : Use a central composite design strategy, faster and espe-

cially useful for problems with higher dimension of the hyperparameter vector θ.

Both strategies are described in Rue et al. (2007).

Default: GMRFLib AI INT STRATEGY CCD

dz : Step length for the integration procedure, only if int strategy =grid.

Default: 1

diff logdens : Only used if int strategy = grid. Threshold for accepting a configuration.

Default: 2.5

skip configurations : Only used if int strategy = grid. Skip fill-in configuration larger than a non-accepted one.

Default: GMRFLib TRUE

gradient finite difference step len (or h): Step length to compute the gradient of π̃(θ).

Default: 1.0e-4

hessian finite difference step len (or h): Step length to compute the Hessian of π̃(θ|y) at the mode.

Default: 1.0e-2

interpolator Type of interpolator used to compute marginals for each hyperparameter π̃(θm|y), the available choices

are:

• GMRFLib AI INTERPOLATOR AUTO: Chose interpolation type based on the integration strategy.

If int strategy =grid, then choose GMRFLib AI INTERPOLATOR WEIGHTED DISTANCE. If int strategy =ccd,

then the choice is GMRFLib AI INTERPOLATOR CCD

• GMRFLib AI INTERPOLATOR LINEAR: Linear interpolation using the (M +1) nearest points, where M
is the dimension of the hyperparameters space.

• GMRFLib AI INTERPOLATOR QUADRATIC: Quadratic interpolation using the (M + 1) nearest points.

• GMRFLib AI INTERPOLATOR WEIGHTED DISTANCE: Linear interpolation using weighted distance.

• GMRFLib AI INTERPOLATOR CCD: Special interpolation for the CCD integration scheme.

The interpolations are described in Martino (2007).
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A.2 Format of the input files

There are five type of input files which can be read from the inla program: the data file, the covariate file, the covariate

locations type, the graph file and the Q-matrix file, each with its own format required. The formats have been already

presented in different examples but are all collected here.

Data file The format of the data file depends on the likelihood model chosen and on whether the data are collected on a

grid or not. The format of the data file is displayed in Table 3.

Covariate and location file Each covariate has to be stored in a separate file. The format of the file depends on whether

the covariate is assumed to have linear or non-linear effect:

Covariates with linear effect: The value of the covariate is simply stored in a file with nη columns each row

having the format:

i zi

where i = 0, . . . , nη − 1 and zi is the value of the covariate for node i.

Covariates with non-linear effect: Let c ∈ C and C = {c(0) < c(1) < · · · < c(idx) < · · · < c(m−1)}. That is,

covariate c takes one of the m values in the ordered vector C. The file storing covariate c has nη row, each

with the following format:

i (idx)i

where i = 0, . . . , nη − 1 and (idx)i is the position of the observed value ci in the vector C. If the values in

C are different from 0, 1, . . . then another file (the locations file) of m rows, is necessary to store the values

of C. A short example will be useful:

Example: Let nη = 5 and C = {9, 10, 11}. Moreover assume that the observed covariate values are

c0 = 10, c1 = 9, c2 = 11, c3 = 9 and c4 = 10. Then the covariate file will be as following

0 1
1 0
2 2
3 0
4 1

We would need also a file storing the values in C:

9
10
11

NOTE: If the covariate value c(i) is not within the indices of the non-linear effect, for example negative,

then this covariate is not included in the predictor for the specific ηi.

Graph file The graph file contains information on the neighbourhood structure of the spatial effect We describe the

required format for such a file using a small example. Let the file graph.dat, relative to a small graph, be

1 5

2 0 1 1

3 1 2 0 2

4 2 3 1 3 4

5 3 1 2

6 4 1 2

Line 1 declares the total number of nodes in the graph, then, in lines 2-6 each node is described. For example,

line 4 states that node 2 has 3 neighbours and these are nodes 1, 3 and 4. This is the same format used in the

GMRFLib library.

Q-matrix This entry is only needed if the field model in a ffield -type section is defined as generic0. The entry specify

a filename which should contain all non-zero entries of the user specified precision matrix Q in the following

format

i j Qij

where i and j are the row and column index and Qij is the corresponding entry in the precision matrix.
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A.3 Some possible problems and solutions

1. The inla function checks that all entries in the ini file are used while building the models, so an error message

like

i n l a b u i l d : [ZAMBIA . i n i ] c o n t a i n [ 1 ] unused e n t r i e s . PLEASE CHECK

probably means that some of the fields in the ini file have been misspelled.

2. In our experience the most common problems with the inla function comes from the optimisation procedure

and the numerical computation of the Hessian of log π̃(θ|y) at the modal configuration.

The optimiser might not converge, thus producing an error message like:

GMRFLib v e r s i o n 3.0−0− s n a p s h o t , has r e c e i v e d e r r o r no [ 1 2 ]

Reason : The Newton−Reason o p t i m i s e r d i d n o t c o n v e r g e

F u n c t i o n : GMRFLib o p t i m i z e s t o r e

F i l e : o p t i m i z e . c

Line : 460

RCSId : $ Id : t u t o r i a l i n l a . t ex , v 1 . 6 9 2009 / 08 / 08 0 9 : 3 8 : 2 8 h r ue Exp $

Usually restarting the inla function assigning different starting values for the hyperparameters vector θ (field

initial ), will solve the problem.

3. Another error which might happen is that the computed numerical Hessian for log π̃(θ|y) in not positive definite.

This produces the following error message:

GMRFLib v e r s i o n 3.0−0− s n a p s h o t , has r e c e i v e d e r r o r no [ 2 ]

Reason : Ma t r i x i s n o t p o s i t i v e d e f i n i t e

Message : C o n d i t i o n ‘ g s l v e c t o r g e t ( e i g e n v a l u e s , ( u n s i g n e d i n t ) i ) >

0 . 0 ’ i s n o t TRUE

F u n c t i o n : GMRFLib a i INLA

F i l e : approx−i n f e r e n c e . c

Line : 2689

RCSId : $ Id : t u t o r i a l i n l a . t ex , v 1 . 6 9 2009 / 08 / 08 0 9 : 3 8 : 2 8 h r ue Exp $

To solve this problem it is usually enough to increase the step length used to numerically compute the Hessian

and the gradient. These quantities can be re-defined in the type=INLA section by using the parameter h which set

gradient finite difference step len= h and hessian finite difference step len=
√

(h). Otherwise, set

the two parameters gradient finite difference step len and hessian finite difference step len.
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B Some Distribution Functions

B.1 Log Gamma distribution

A random variable X has a LogGamma distribution with parameters a and b (LogGamma(a,b))) if Y = exp(X) has a

Gamma distribution with mean a/b and variance a/b2.

B.2 Scaled Student-t distribution

A scaled Student-t distribution is a Student-t distribution with ν degrees of freedom scaled so that its mean is 0 and its

variance is 1 for any value of the parameter ν.

B.3 NIG distribution

A random variable X is said to have a standardised normal inverse Gaussian distribution NIG(β, ψ) with hyperparam-

eters θ1 = (β, psi) if its density is given by

f(y;θ1) =
γψ

π

√
β2 + ψ2

(γx+ β)2 + ψ2
exp

(
ψ2 + β(γx+ β)

)
K1

(√
(β2 + ψ2) ((γx+ β)2 + ψ2)

)

where γ2 = 1 + β2/ψ2. The above density has zero mean and unit variance. The parameter β controls (essentially)

the skewness of the density, while the parameter ψ is (essentially) a shape parameter. This density is used in financial

applications.

B.4 Weibull distribution

A random variable Y has a Weibull distribution with parameters α and γ if its density function is given by

f(y;α, γ) = αyα−1 exp{log γ − γyα}

The survival function is then:

S(y;α, γ) = 1 −
∫ y

0

f(u;α, γ) du = exp(−γ yα)

and hazard rate function:

h(y;α, λ) = α yα−1 γ

85



Model Model

Type Name Parameters Reference

Independent

random noise iid log-precision log λf

Random Walk

of order 1 rw1 log-precision log λf (Rue and Held, 2005, Ch. 3.3.1)

Random Walk

of order 2 rw2 log-precision log λf (Rue and Held, 2005, Ch. 3.4.1)

First order

Intrinsic GMRF besag log-precision log λf (Rue and Held, 2005, Ch. 3.3.2)

on a irregular lattice

Continuous

random walk crw2 log-precision log λf (Rue and Held, 2005, Ch. 3.5)

Autoregressive

of order 1 ar1 log-precision log λf (Rue and Held, 2005, Ch. 1.1)

xt = φxt−1 + εt κ = logitφ+1
2

User defined

precision matrix generic0 log-precision log λf (see Example 6)

Bivariate 2diid log-precision log λµ (see Example 4)

correlated noise log-precision log λν

correlation ρ∗

Bivariate 2 diidwishart log-precision log λµ (see Example 4)

correlated noise log-precision log λν

correlation ρ∗

Bivariate 2 diidwishartpart0 log-precision log λµ (see Example 4)

correlated noise log-precision log λν

correlation ρ∗

Bivariate 2 diidwishartpart1 log-precision log λµ (see Example 4)

correlated noise log-precision log λν

correlation ρ∗

Table 5: The most common models for the type= ffield section implemented in the inla program; The one

not mention here is the 3diid-Wishart model described in Section 3.4.5.

Hyperparameter Prior distribution Default param

Log-Precision log λf LogGamma(a, b)

κ (only for AR1) N (0, 1/preck) preck = 0.001

Table 6: Prior distributions for the hyperparameters
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